Beyond i.i.d. in quantum information theory

被引:21
作者
Bowen, Garry [1 ]
Datta, Nilanjana [2 ]
机构
[1] Univ Cambridge, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Cambridge, Stat Lab, Cambridge CB3 0WB, England
来源
2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS | 2006年
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/ISIT.2006.261709
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The information spectrum approach gives general formulae for optimal rates of codes in many areas of information theory. In this paper the quantum spectral divergence rates are defined and properties of the rates are derived. The entropic rates, conditional entropic rates, and spectral mutual information rates are then defined in terms of the spectral divergence rates. Properties including subadditivity, chain rules, Araki-Lieb inequalities, and monotonicity are then explored.
引用
收藏
页码:451 / +
页数:2
相关论文
共 8 条
[1]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[2]  
Cover TM, 2006, Elements of Information Theory
[3]  
Han T. S., 2002, INFORM SPECTRUM METH
[4]  
Hayashi M, 2003, 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, P431
[5]   General formulas for capacity of classical-quantum channels [J].
Hayashi, M ;
Nagaoka, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (07) :1753-1768
[6]  
NAGAOKA H, 2002, QUANTPH0206185
[7]  
Ogawa T, 2000, IEEE T INFORM THEORY, V46, P2428, DOI 10.1109/18.887855
[8]   A GENERAL FORMULA FOR CHANNEL CAPACITY [J].
VERDU, S ;
HAN, TS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) :1147-1157