Infinite invariant measures for non-uniformly expanding transformations of [0, 1]: Weak law of large numbers with anomalous scaling

被引:14
作者
Campanino, M
Isola, S
机构
[1] Dipartimento di Matematica, Universita degli Studidi Bologna, Bologna, piazza di Porta S. Donato 5
关键词
D O I
10.1515/form.1996.8.71
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of maps of [0, 1] with an indifferent fixed point at 0 and expanding everywhere else. Using the invariant ergodic probability measure of a suitable, everywhere expanding, induced transformation we are able to study the infinite invariant measure of the original map in some detail. Given a continuous function with compact support in ]0, 1], we prove that its time averages satisfy a 'weak law of large numbers' with anomalous scaling n/log n and give an upper bound for the decay of correlations.
引用
收藏
页码:71 / 92
页数:22
相关论文
共 12 条
[1]   THE ASYMPTOTIC DISTRIBUTIONAL BEHAVIOR OF TRANSFORMATIONS PRESERVING INFINITE MEASURES [J].
AARONSON, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1981, 39 :203-234
[2]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[3]   STATISTICAL PROPERTIES OF LONG RETURN TIMES IN TYPE-I INTERMITTENCY [J].
CAMPANINO, M ;
ISOLA, S .
FORUM MATHEMATICUM, 1995, 7 (03) :331-348
[4]  
COLLET P, 1990, ANN I H POINCARE-PHY, V52, P283
[5]   STATISTICS OF CLOSE VISITS TO THE INDIFFERENT FIXED-POINT OF AN INTERVAL MAP [J].
COLLET, P ;
GALVES, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 72 (3-4) :459-478
[6]  
Lasota A., 1985, PROBABILISTIC PROPER
[7]  
MANNEVILLE P, 1980, COMMUN MATH PHYS, V74, P189
[8]   1ST RETURN MAP AND INVARIANT-MEASURES [J].
PIANIGIANI, G .
ISRAEL JOURNAL OF MATHEMATICS, 1980, 35 (1-2) :32-48
[9]   MAPS OF INTERVALS WITH INDIFFERENT FIXED-POINTS - THERMODYNAMIC FORMALISM AND PHASE-TRANSITIONS [J].
PRELLBERG, T ;
SLAWNY, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :503-514
[10]  
Ruelle D., 1978, THERMODYNAMIC FORMAL