Sculpting the spin-wave response of artificial spin ice via microstate selection

被引:41
作者
Arroo, D. M. [1 ,2 ,3 ]
Gartside, J. C. [1 ]
Branford, W. R. [1 ]
机构
[1] Imperial Coll, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
[2] UCL, London Ctr Nanotechnol, 17-19 Gordon St, London WC1H 0AH, England
[3] UCL, Dept Phys & Astron, 17-19 Gordon St, London WC1H 0AH, England
基金
英国工程与自然科学研究理事会;
关键词
38;
D O I
10.1103/PhysRevB.100.214425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Artificial spin ice (ASI) systems have emerged as promising hosts for magnonic applications due to a correspondence between their magnetic configuration and spin dynamics. Though it has been demonstrated that spin-wave spectra are influenced by the ASI microstate the precise nature of this relationship has remained unclear. Recent advances in controlling the magnetic configuration of ASI make harnessing the interplay between spin dynamics and the microstate achievable. This could allow diverse applications including reconfigurable magnonic crystals and programmable microwave filters. However, extracting any novel functionality requires a full understanding of the underlying spin-wave/microstate interaction. Here, we present a systematic analysis of how the microstate of a honeycomb ASI system affects its spin-wave spectrum through micromagnetic simulations. We find the spectrum to be highly tunable via the magnetic microstate, allowing the (de)activation of spin-wave modes and band-gap tuning via magnetic reversal of individual nanoislands. Symmetries of ASI systems and the chirality of "monopole" defects are found to play important roles in determining the high-frequency magnetic response.
引用
收藏
页数:7
相关论文
共 37 条
[1]  
[Anonymous], SIM WER CARR OUT HIG, DOI [10.14469/hpc/2232, DOI 10.14469/HPC/2232]
[2]   Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations [J].
Baker, Alexander ;
Beg, Marijan ;
Ashton, Gregory ;
Albert, Maximilian ;
Chernyshenko, Dmitri ;
Wang, Weiwei ;
Zhang, Shilei ;
Bisotti, Marc-Antonio ;
Franchin, Matteo ;
Hu, Chun Lian ;
Stamps, Robert ;
Hesjedal, Thorsten ;
Fangohr, Hans .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 421 :428-439
[3]   Angular-dependent spin dynamics of a triad of permalloy macrospins [J].
Bang, Wonbae ;
Montoncello, F. ;
Jungfleisch, M. B. ;
Hoffmann, A. ;
Giovannini, L. ;
Ketterson, J. B. .
PHYSICAL REVIEW B, 2019, 99 (01)
[4]   Angle-dependent magnetization dynamics with mirror-symmetric excitations in artificial quasicrystalline nanomagnet lattices [J].
Bhat, V. S. ;
Grundler, D. .
PHYSICAL REVIEW B, 2018, 98 (17)
[5]   Angular-dependent magnetization dynamics of kagome artificial spin ice incorporating topological defects [J].
Bhat, V. S. ;
Heimbach, F. ;
Stasinopoulos, I. ;
Grundler, D. .
PHYSICAL REVIEW B, 2017, 96 (01)
[6]   Magnetization dynamics of topological defects and the spin solid in a kagome artificial spin ice [J].
Bhat, V. S. ;
Heimbach, F. ;
Stasinopoulos, I. ;
Grundler, D. .
PHYSICAL REVIEW B, 2016, 93 (14)
[7]   Dynamic dependence to domain wall propagation through artificial spin ice [J].
Burn, D. M. ;
Chadha, M. ;
Branford, W. R. .
PHYSICAL REVIEW B, 2017, 95 (10)
[8]   Magnetic monopole polarons in artificial spin ices [J].
Chern, Gia-Wei ;
Mellado, Paula .
EPL, 2016, 114 (03)
[9]   Magnonic crystals for data processing [J].
Chumak, A. V. ;
Serga, A. A. ;
Hillebrands, B. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (24)
[10]  
Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/nphys3347, 10.1038/NPHYS3347]