Entity-Enhanced Graph Convolutional Network for Accurate and Explainable Recommendation

被引:1
|
作者
Wang, Qinqin [1 ]
Tragos, Elias [1 ]
Hurley, Neil [1 ]
Smyth, Barry [1 ]
Lawlor, Aonghus [1 ]
Dong, Ruihai [1 ]
机构
[1] Univ Coll Dublin, Insight Ctr Data Analyt, Dublin, Ireland
关键词
Recommender system; Graph Neural Network; Higher-order Connectivity; Collaborative Filtering;
D O I
10.1145/3503252.3531316
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A recommendation engine that relies solely on interactions between users and items will be limited in its ability to provide accurate, diverse and explanation-rich recommendations. Side information should be taken into account to improve performance. Methods like Factorisation Machines (FM) cast recommendation as a supervised learning problem, where each interaction is viewed as an independent instance with side information encapsulated. Previous studies in top-K recommendation have incorporated knowledge graphs (KG) into the recommender system to provide rich information about the relationships between users, items and entities. Nevertheless, these studies do not explicitly capture the preference of users for the side information. Furthermore, some studies explain the recommendation, but there is no unified method of measuring explanation quality. In this work, we investigate the utility of Graph Convolutional Networks (GCN) and multi-task learning techniques to capture the tripartite relations between users, items and entities. Based on our study, we propose that in the hybrid structure of the KG, its rich relationships are an essential factor for successful recommendation from both an explanation and performance perspective. We propose a novel method named Light Knowledge Graph Convolutional Network (LKGCN) which explicitly models the high-order connectivities between user items and entities. Specifically, we use multi-task learning techniques and attention mechanisms in order to combine user preferences on items and entities. Additionally, we present a unified evaluation method PeX for explainable recommendation models. Extensive experiments on real-world datasets show that the LKGCN is conceptually superior to existing graph-based recommendation methods from two perspectives: recommendation accuracy and interpretation. We release the codes and datasets on github(1).
引用
收藏
页码:79 / 88
页数:10
相关论文
共 50 条
  • [21] Multimodal heterogeneous graph convolutional network for image recommendation
    Weiyi Wei
    Jian Wang
    Mengyu Xu
    Futong Zhang
    Multimedia Systems, 2023, 29 : 2747 - 2760
  • [22] Recommendation method for fusion of knowledge graph convolutional network
    Jiang, Xiaolin
    Fu, Yu
    Dong, Changchun
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [23] Attentional Social Recommendation System with Graph Convolutional Network
    Jiang, Yanbin
    Ma, Huifang
    Liu, Yuhang
    Li, Zhixin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [24] Multimodal heterogeneous graph convolutional network for image recommendation
    Wei, Weiyi
    Wang, Jian
    Xu, Mengyu
    Zhang, Futong
    MULTIMEDIA SYSTEMS, 2023, 29 (5) : 2747 - 2760
  • [25] An improved heterogeneous graph convolutional network for job recommendation
    Wang, Hao
    Yang, Wenchuan
    Li, Jichao
    Ou, Junwei
    Song, Yanjie
    Chen, Yingwu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [26] Graph Convolutional Neural Network for Multimodal Movie Recommendation
    Mondal, Prabir
    Chakder, Daipayan
    Raj, Subham
    Saha, Sriparna
    Onoe, Naoyuki
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 1633 - 1640
  • [27] Low-Pass Graph Convolutional Network for Recommendation
    Yu, Wenhui
    Zhang, Zixin
    Qin, Zheng
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8954 - 8961
  • [28] Temporal-Guided Knowledge Graph-Enhanced Graph Convolutional Network for Personalized Movie Recommendation Systems
    Chen, Chin-Yi
    Huang, Jih-Jeng
    FUTURE INTERNET, 2023, 15 (10)
  • [29] Game Recommendation Based on Dynamic Graph Convolutional Network
    Ye, Wenwen
    Qin, Zheng
    Ding, Zhuoye
    Yin, Dawei
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 335 - 351
  • [30] Recommendation method for fusion of knowledge graph convolutional network
    Xiaolin Jiang
    Yu Fu
    Changchun Dong
    EURASIP Journal on Advances in Signal Processing, 2022