Simulation-to-Reality Domain Adaptation for Offline 3D Object Annotation on Pointclouds with Correlation Alignment

被引:0
作者
Zhang, Weishuang [1 ]
Kiran, B. Ravi [1 ]
Gauthier, Thomas [1 ]
Mazouz, Yanis [1 ]
Steger, Theo [1 ]
机构
[1] Navya, Villeurbanne, France
来源
IMPROVE: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND VISION ENGINEERING | 2022年
关键词
Pointclouds; Object Detection; 3D; Simulation; Unsupervised Domain Adaptation;
D O I
10.5220/0011059200003209
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Annotating objects with 3D bounding boxes in LiDAR pointclouds is a costly human driven process in an autonomous driving perception system. In this paper, we present a method to semi-automatically annotate real-world pointclouds collected by deployment vehicles using simulated data. We train a 3D object detector model on labeled simulated data from CARLA jointly with real world pointclouds from our target vehicle. The supervised object detection loss is augmented with a CORAL loss term to reduce the distance between labeled simulated and unlabeled real pointcloud feature representations. The goal here is to learn representations that are invariant to simulated (labeled) and real-world (unlabeled) target domains. We also provide an updated survey on domain adaptation methods for pointclouds.
引用
收藏
页码:142 / 149
页数:8
相关论文
共 30 条
[1]   Domain Adaptation in LiDAR Semantic Segmentation by Aligning Class Distributions [J].
Alonso, Inigo ;
Riazuelo, Luis ;
Montesano, Luis ;
Murillo, Ana C. .
PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO), 2021, :330-337
[2]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[3]  
Besic Borna, 2021, ARXIV PREPRINT ARXIV
[4]   Multimodal 3D Object Detection from Simulated Pretraining [J].
Brekke, Asmund ;
Vatsendvik, Fredrik ;
Lindseth, Frank .
NORDIC ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 1056 :102-113
[5]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[6]   Adversarial Training on Point Clouds for Sim-to-Real 3D Object Detection [J].
DeBortoli, Robert ;
Li Fuxin ;
Kapoor, Ashish ;
Hollinger, Geoffrey A. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) :6662-6669
[7]   Paris-CARLA-3D: A Real and Synthetic Outdoor Point Cloud Dataset for Challenging Tasks in 3D Mapping [J].
Deschaud, Jean-Emmanuel ;
Duque, David ;
Richa, Jean Pierre ;
Velasco-Forero, Santiago ;
Marcotegui, Beatriz ;
Goulette, Francois .
REMOTE SENSING, 2021, 13 (22)
[8]  
Dosovitskiy A, 2017, PR MACH LEARN RES, V78
[9]  
Dworak D, 2019, 2019 24TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), P600, DOI 10.1109/MMAR.2019.8864642
[10]   Augmented LiDAR Simulator for Autonomous Driving [J].
Fang, Jin ;
Zhou, Dingfu ;
Yan, Feilong ;
Zhao, Tongtong ;
Zhang, Feihu ;
Ma, Yu ;
Wang, Liang ;
Yang, Ruigang .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :1931-1938