Zirconia-MWCNT nanocomposites for biomedical applications obtained by colloidal processing

被引:27
作者
Garmendia, N. [1 ,2 ]
Santacruz, I. [3 ,4 ]
Moreno, R. [3 ]
Obieta, I. [1 ,2 ]
机构
[1] INASMET TECNALIA, Unidad Salud, San Sebastian 20009, Gipuzkoa, Spain
[2] Ciber BBN, San Sebastian, Gipuzkoa, Spain
[3] CSIC, Inst Ceram & Vidrio, E-28049 Madrid, Spain
[4] Univ Malaga, Dept Quim Inorgan Cristalog & Mineral, E-29071 Malaga, Spain
关键词
REINFORCED ALUMINA NANOCOMPOSITE; WALL CARBON NANOTUBES; SINTERING TEMPERATURE; FRACTURE-TOUGHNESS; CERAMIC-MATRIX; INDENTATION; MICROSTRUCTURE; NANOZIRCONIA; COMPOSITES;
D O I
10.1007/s10856-010-4023-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Zirconia ceramics are widely used as femoral heads, but case studies show that delayed failure can occur in vivo due to crack propagation. The addition of carbon nanotubes (CNT) is aimed to avoid the slow crack propagation and to enhance the toughness of the ceramic material used for prostheses. However, to really enhance the mechanical properties of the material it is necessary to achieve a uniform distribution of the CNT in the zirconia matrix. Colloidal processing has demonstrated to be suitable for obtaining ceramic-based composites with homogeneous distribution of the phases and high green density. This work compares the colloidal behavior of the as-received multi wall carbon nanotubes (ar-MWCNT) and the partially coated MWCNT (pc-MWCNT) when immersed in a nanozirconia matrix. With pc-MWCNT an improvement in the dispersion is proved. Moreover, the sintered samples that contain pc-MWCNT show higher density, lower grain size, improved toughness and enhanced hardness under the same sintering cycle when compared to the samples with ar-MWCNT.
引用
收藏
页码:1445 / 1451
页数:7
相关论文
共 35 条
[1]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS [J].
ANSTIS, GR ;
CHANTIKUL, P ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :533-538
[2]   In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating [J].
Balani, K. ;
Zhang, T. ;
Karakoti, A. ;
Li, W. Z. ;
Seal, S. ;
Agarwal, A. .
ACTA MATERIALIA, 2008, 56 (03) :571-579
[3]   Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications [J].
Benzaid, Rajaa ;
Chevalier, Jerome ;
Saddaoui, Malika ;
Fantozzi, Gilbert ;
Nawa, Masahiro ;
Diaz, Luis Antonio ;
Torrecillas, Ramon .
BIOMATERIALS, 2008, 29 (27) :3636-3641
[4]   Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process [J].
Cha, SI ;
Kim, KT ;
Lee, KH ;
Mo, CB ;
Hong, SH .
SCRIPTA MATERIALIA, 2005, 53 (07) :793-797
[5]  
Chevalier J, 2000, ADV MATER, V12, P1619, DOI 10.1002/1521-4095(200011)12:21<1619::AID-ADMA1619>3.0.CO
[6]  
2-O
[7]   What future for zirconia as a biomaterial? [J].
Chevalier, J .
BIOMATERIALS, 2006, 27 (04) :535-543
[8]   CNT-reinforced ceramics and metals [J].
Curtin, William A. ;
Sheldon, Brian W. .
MATERIALS TODAY, 2004, 7 (11) :44-49
[9]   A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia [J].
Deville, S ;
Gremillard, L ;
Chevalier, J ;
Fantozzi, G .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2005, 72B (02) :239-245
[10]   Zirconia/carbon nanofiber composite [J].
Duszova, Annamaria ;
Dusza, Jan ;
Tomasek, Karel ;
Morgiel, Jerzy ;
Blugan, Gurdial ;
Kuebler, Jakob .
SCRIPTA MATERIALIA, 2008, 58 (06) :520-523