Intragranular growth and evenly distribution mechanism of Li metal in Li7La3Zr2O12 electrolyte

被引:19
作者
Zhang, L. C. [1 ]
Yang, J. F. [1 ]
Li, C. L. [1 ,2 ]
Gao, Y. X. [1 ]
Wang, X. P. [1 ]
Fang, Q. F. [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Garnet; Li6.55La2.95Ca0.05Zr1.5Ta0.5O12; Solid electrolyte; Lithium dendrite; Short circuit; GARNET; INTERFACE; STABILITY; CONDUCTIVITY;
D O I
10.1016/j.jpowsour.2019.227610
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of garnet-type solid electrolytes in all-solid-state Li metal battery is seriously impeded by the lithium dendrite and resultant short-circuit. To explore its growth mechanism, in this work, a special asymmetric cell configuration is designed with a porous Li6.55La2.95Ca0.05Zr1.5Ta0.5O12 (LLCZTO) electrolyte between two mutually perpendicular Li metal strips. Besides the generally perceived lithium dendrite growth through grain boundaries, it is witnessed for the first time that lithium dendrite could also penetrate and break the LLCZTO grains, i.e., intragranular growth. Furthermore, uniform distributed lithium spherical particles, instead of lithium dendrite, are found on the surface of LLCZTO with Au-coating, demonstrating the beneficial effect of Au layer on restraining lithium dendrite growth. These findings shed new light on the growth mechanism and inhibition measures of lithium dendrite and would be helpful for the future research of all-solid-state Li metal battery with garnet-type solid electrolytes.
引用
收藏
页数:5
相关论文
共 21 条
[1]   Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal [J].
Aguesse, Frederic ;
Manalastas, William ;
Buannic, Lucienne ;
Lopez del Amo, Juan Miguel ;
Singh, Gurpreet ;
Llordes, Anna ;
Kilner, John .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) :3808-3816
[2]   Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors [J].
Alexander, George Vadakkethalakel ;
Patra, Srabani ;
Valiyaveetil, Sona ;
Raj, Sobhan ;
Sugumar, Manoj Krishna ;
Din, Mir Mehraj Ud ;
Murugan, Ramaswamy .
JOURNAL OF POWER SOURCES, 2018, 396 :764-773
[3]   Stability of garnet-type Li ion conductors: An overview [J].
Duan, Huanan ;
Zheng, Hongpeng ;
Zhou, Ying ;
Xu, Biyi ;
Liu, Hezhou .
SOLID STATE IONICS, 2018, 318 :45-53
[4]   Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Fu, Zhezhen ;
Xie, Hua ;
Yao, Yonggang ;
Liu, Boyang ;
Carter, Marcus ;
Wachsman, Eric ;
Hu, Liangbing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (47) :14942-14947
[5]   High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes [J].
Han, Fudong ;
Westover, Andrew S. ;
Yue, Jie ;
Fan, Xiulin ;
Wang, Fei ;
Chi, Miaofang ;
Leonard, Donovan N. ;
Dudney, Nancyj ;
Wang, Howard ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (03) :187-196
[6]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/NMAT4821, 10.1038/nmat4821]
[7]   Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium [J].
Hofstetter, Kyle ;
Samson, Alfred Junio ;
Narayanan, Sumaletha ;
Thangadurai, Venkataraman .
JOURNAL OF POWER SOURCES, 2018, 390 :297-312
[8]  
Irvine J. T. S., 1990, Advanced Materials, V2, P132, DOI 10.1002/adma.19900020304
[9]   Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications [J].
Jena, Anirudha ;
Meesala, Yedukondalu ;
Hu, Shu-Fen ;
Chang, Ho ;
Liu, Ru-Shi .
ACS ENERGY LETTERS, 2018, 3 (11) :2775-2795
[10]   Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells [J].
Louli, A. J. ;
Genovese, Matthew ;
Weber, Rochelle ;
Hames, S. G. ;
Logan, E. R. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) :A1291-A1299