Using deep learning to enhance event geometry reconstruction for the telescope array surface detector

被引:9
|
作者
Ivanov, D. [1 ,2 ]
Kalashev, O. E. [3 ,4 ,5 ]
Kuznetsov, M. Yu [3 ,6 ]
Rubtsov, G., I [3 ]
Sako, T. [7 ]
Tsunesada, Y. [8 ,9 ]
Zhezher, Y., V [3 ,7 ]
机构
[1] Univ Utah, High Energy Astrophys Inst, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[3] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia
[4] Moscow Inst Phys & Technol, 9 Inst Skiy Per, Dolgoprudnyi 141701, Moscow Region, Russia
[5] Novosibirsk State Univ, Pirogova 2, Novosibirsk 630090, Russia
[6] Univ Libre Bruxelles, Serv Phys Theor, Blvd Triomphe,CP225, B-1050 Brussels, Belgium
[7] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan
[8] Osaka City Univ, Grad Sch Sci, Osaka, Osaka 5580022, Japan
[9] Osaka City Univ, Nambu Yoichiro Inst Theoret & Expt Phys, Osaka, Osaka 5588585, Japan
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 01期
基金
俄罗斯科学基金会;
关键词
ultra-high energy cosmic rays; machine learning; telescope array observatory; ENERGY COSMIC-RAYS; ARRIVAL DIRECTIONS; FLUORESCENCE DETECTORS; SCALE ANISOTROPY; EEV; DISTANCES; SEARCH; FLUX;
D O I
10.1088/2632-2153/abae74
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extremely low flux of ultra-high energy cosmic rays (UHECR) makes their direct observation by orbital experiments practically impossible. For this reason all current and planned UHECR experiments detect cosmic rays indirectly by observing the extensive air showers (EAS) initiated by cosmic ray particles in the atmosphere. The world largest statistics of the ultra-high energy EAS events is recorded by the networks of surface stations. In this paper we consider a novel approach for reconstruction of the arrival direction of the primary particle based on the deep convolutional neural network. The latter is using raw time-resolved signals of the set of the adjacent trigger stations as an input. The Telescope Array (TA) Surface Detector (SD) is an array of 507 stations, each containing two layers plastic scintillator with an area of 3 m(2). The training of the model is performed with the Monte-Carlo dataset. It is shown that within the Monte-Carlo simulations, the new approach yields better resolution than the traditional reconstruction method based on the fitting of the EAS front. The details of the network architecture and its optimization for this particular task are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Phase recovery and holographic image reconstruction using deep learning in neural networks
    Yair Rivenson
    Yibo Zhang
    Harun Günaydın
    Da Teng
    Aydogan Ozcan
    Light: Science & Applications, 2018, 7 : 17141 - 17141
  • [32] AReN: A Deep Learning Approach for Sound Event Recognition Using a Brain Inspired Representation
    Greco, Antonio
    Petkov, Nicolai
    Saggese, Alessia
    Vento, Mario
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 3610 - 3624
  • [33] Click-event sound detection in automotive industry using machine/deep learning
    Espinosa, Ricardo
    Ponce, Hiram
    Gutierrez, Sebastian
    APPLIED SOFT COMPUTING, 2021, 108
  • [34] Deep Learning Algorithms for Defect Detection using Phased Array Ultrasonic Testing Data
    Barashok, Kseniia
    Park, Junpil
    Lee, Jaesun
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2023, 43 (01) : 34 - 43
  • [35] Harvesting social media sentiment analysis to enhance stock market prediction using deep learning
    Mehta, Pooja
    Pandya, Sharnil
    Kotecha, Ketan
    PEERJ COMPUTER SCIENCE, 2021, 7 : 1 - 21
  • [36] Reconstruction of initial pressure from limited view photoacoustic images using deep learning
    Waibel, Dominik
    Groehl, Janek
    Isensee, Fabian
    Kirchner, Thomas
    Maier-Hein, Klaus
    Maier-Hein, Lena
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2018, 2018, 10494
  • [37] INDICATIONS OF INTERMEDIATE-SCALE ANISOTROPY OF COSMIC RAYS WITH ENERGY GREATER THAN 57 EeV IN THE NORTHERN SKY MEASURED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT
    Abbasi, R. U.
    Abe, M.
    Abu-Zayyad, T.
    Allen, M.
    Anderson, R.
    Azuma, R.
    Barcikowski, E.
    Belz, J. W.
    Bergman, D. R.
    Blake, S. A.
    Cady, R.
    Chae, M. J.
    Cheon, B. G.
    Chiba, J.
    Chikawa, M.
    Cho, W. R.
    Fujii, T.
    Fukushima, M.
    Goto, T.
    Hanlon, W.
    Hayashi, Y.
    Hayashida, N.
    Hibino, K.
    Honda, K.
    Ikeda, D.
    Inoue, N.
    Ishii, T.
    Ishimori, R.
    Ito, H.
    Ivanov, D.
    Jui, C. C. H.
    Kadota, K.
    Kakimoto, F.
    Kalashev, O.
    Kasahara, K.
    Kawai, H.
    Kawakami, S.
    Kawana, S.
    Kawata, K.
    Kido, E.
    Kim, H. B.
    Kim, J. H.
    Kim, J. H.
    Kitamura, S.
    Kitamura, Y.
    Kuzmin, V.
    Kwon, Y. J.
    Lan, J.
    Lim, S. I.
    Lundquist, J. P.
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 790 (02)
  • [38] Hourly road pavement surface temperature forecasting using deep learning models
    Tabrizi, Sepideh Emami
    Xiao, Kai
    The, Jesse Van Griensven
    Saad, Muhammad
    Farghaly, Hani
    Yang, Simon X.
    Gharabaghi, Bahram
    JOURNAL OF HYDROLOGY, 2021, 603
  • [39] Image-Based Surface Defect Detection Using Deep Learning: A Review
    Bhatt, Prahar M.
    Malhan, Rishi K.
    Rajendran, Pradeep
    Shah, Brual C.
    Thakar, Shantanu
    Yoon, Yeo Jung
    Gupta, Satyandra K.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2021, 21 (04)
  • [40] Analysis of remote sensing imagery for disaster assessment using deep learning: a case study of flooding event
    Liping Yang
    Guido Cervone
    Soft Computing, 2019, 23 : 13393 - 13408