Using deep learning to enhance event geometry reconstruction for the telescope array surface detector

被引:9
|
作者
Ivanov, D. [1 ,2 ]
Kalashev, O. E. [3 ,4 ,5 ]
Kuznetsov, M. Yu [3 ,6 ]
Rubtsov, G., I [3 ]
Sako, T. [7 ]
Tsunesada, Y. [8 ,9 ]
Zhezher, Y., V [3 ,7 ]
机构
[1] Univ Utah, High Energy Astrophys Inst, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[3] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia
[4] Moscow Inst Phys & Technol, 9 Inst Skiy Per, Dolgoprudnyi 141701, Moscow Region, Russia
[5] Novosibirsk State Univ, Pirogova 2, Novosibirsk 630090, Russia
[6] Univ Libre Bruxelles, Serv Phys Theor, Blvd Triomphe,CP225, B-1050 Brussels, Belgium
[7] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan
[8] Osaka City Univ, Grad Sch Sci, Osaka, Osaka 5580022, Japan
[9] Osaka City Univ, Nambu Yoichiro Inst Theoret & Expt Phys, Osaka, Osaka 5588585, Japan
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 01期
基金
俄罗斯科学基金会;
关键词
ultra-high energy cosmic rays; machine learning; telescope array observatory; ENERGY COSMIC-RAYS; ARRIVAL DIRECTIONS; FLUORESCENCE DETECTORS; SCALE ANISOTROPY; EEV; DISTANCES; SEARCH; FLUX;
D O I
10.1088/2632-2153/abae74
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extremely low flux of ultra-high energy cosmic rays (UHECR) makes their direct observation by orbital experiments practically impossible. For this reason all current and planned UHECR experiments detect cosmic rays indirectly by observing the extensive air showers (EAS) initiated by cosmic ray particles in the atmosphere. The world largest statistics of the ultra-high energy EAS events is recorded by the networks of surface stations. In this paper we consider a novel approach for reconstruction of the arrival direction of the primary particle based on the deep convolutional neural network. The latter is using raw time-resolved signals of the set of the adjacent trigger stations as an input. The Telescope Array (TA) Surface Detector (SD) is an array of 507 stations, each containing two layers plastic scintillator with an area of 3 m(2). The training of the model is performed with the Monte-Carlo dataset. It is shown that within the Monte-Carlo simulations, the new approach yields better resolution than the traditional reconstruction method based on the fitting of the EAS front. The details of the network architecture and its optimization for this particular task are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Predictive Modeling of Surface Flashover Using Deep Learning
    Tewari, Vedant
    Al Sufi, Suaib
    Benet, Sean
    Park, Chanyeop
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [22] Stampede detector based on deep learning models using dense optical flow
    Cob-Parro, Antonio Carlos
    Losada-Gutierrez, Cristina
    Marron-Romera, Marta
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 142
  • [23] Using Machine Learning for Aerostructure Surface Damage Digital Reconstruction
    Wu, Yijia
    Tang, Hon Ping
    Mannion, Anthony
    Voyle, Robert
    Xin, Ying
    AEROSPACE, 2025, 12 (01)
  • [24] Reconstruction of offsets of an electron gun using deep learning and an optimization algorithm
    Meier, David
    Hartmann, Gregor
    Voelker, Jens
    Viefhaus, Jens
    Sick, Bernhard
    ADVANCES IN COMPUTATIONAL METHODS FOR X-RAY OPTICS V, 2020, 11493
  • [25] BraggNet: Complex Photonic Integrated Circuit Reconstruction Using Deep Learning
    Cauchon, Jonathan
    Vallee, Jean-Michel
    St-Yves, Jonathan
    Shi, Wei
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2021, 27 (06)
  • [26] Austenitic parent grain reconstruction in martensitic steel using deep learning
    Fernandez-Zelaia, Patxi
    Rossy, Andres Marquez
    Campbell, Quinn
    Nycz, Andrzej
    Ledford, Christopher
    Kirka, Michael M.
    MATERIALS CHARACTERIZATION, 2022, 185
  • [27] Deep-Learning-Based 3-D Surface Reconstruction-A Survey
    Farshian, Anis
    Goetz, Markus
    Cavallaro, Gabriele
    Debus, Charlotte
    Niessner, Matthias
    Benediktsson, Jon Atli
    Streit, Achim
    PROCEEDINGS OF THE IEEE, 2023, 111 (11) : 1464 - 1501
  • [28] Reconstruction of pile-up events using a one-dimensional convolutional autoencoder for the NEDA detector array
    Deltoro, J. M.
    Jaworski, G.
    Goasduff, A.
    Gonzalez, V.
    Gadea, A.
    Palacz, M.
    Valiente-Dobon, J. J.
    Nyberg, J.
    Casans, S.
    Navarro-Anton, A. E.
    Sanchis, E.
    de Angelis, G.
    Boujrad, A.
    Coudert, S.
    Dupasquier, T.
    Erturk, S.
    Stezowski, O.
    Wadsworth, R.
    NUCLEAR SCIENCE AND TECHNIQUES, 2025, 36 (02)
  • [29] Phase recovery and holographic image reconstruction using deep learning in neural networks
    Rivenson, Yair
    Zhang, Yibo
    Gunaydin, Harun
    Teng, Da
    Ozcan, Aydogan
    LIGHT-SCIENCE & APPLICATIONS, 2018, 7 : 17141 - 17141
  • [30] Phase Object Reconstruction for 4D-STEM using Deep Learning
    Friedrich, Thomas
    Yu, Chu-Ping
    Verbeeck, Johan
    Van Aert, Sandra
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (01) : 395 - 407