Characterization of the Dunkl-classical symmetric orthogonal polynomials

被引:39
作者
Ben Cheikh, Y. [1 ]
Gaied, M.
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
[2] Inst Preparatoire Etud Ingn, Dept Preparat Math Phys, Monastir 5019, Tunisia
关键词
orthogonal polynomials; symmetric orthogonal polynomials; Dunkl operator; generalized hermite polynomials; generalized Gegenbauer polynomials; sieved ultraspherical polynomials;
D O I
10.1016/j.amc.2006.08.108
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notion of Dunk1-classical orthogonal polynomials. Then, we show that generalized Hermite and generalized Gegenbauer polynomials are the only Dunk1-classical symmetric orthogonal polynomials by solving a suitable differential-difference equation. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 19 条
[1]  
Abdelkarim F., 1997, Results Math, V32, P1
[2]  
[Anonymous], SPECIAL FUNCTIONS MA
[3]   Classical symmetric orthogonal polynomials of a discrete variable [J].
Area, I ;
Godoy, E ;
Ronveaux, A ;
Zarzo, A .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) :1-12
[4]   DIVIDED DIFFERENCE-OPERATORS AND CLASSICAL ORTHOGONAL POLYNOMIALS [J].
ASKEY, R .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (01) :33-37
[5]   Generalized Gegenbauer orthogonal polynomials [J].
Belmehdi, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) :195-205
[6]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[7]  
Chihara T.S., 1978, An Introduction to Orthogonal Polynomials, V13
[9]   INTEGRAL-KERNELS WITH REFLECTION GROUP INVARIANCE [J].
DUNKL, CF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1213-1227
[10]   SINGULAR POLYNOMIALS FOR FINITE REFLECTION GROUPS [J].
DUNKL, CF ;
DEJEU, MF ;
OPDAM, EM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 346 (01) :237-256