Newton's Method for the Matrix Nonsingular Square Root

被引:2
作者
Li, Chun-Mei [1 ]
Shen, Shu-Qian [2 ]
机构
[1] Guilin Univ Elect Technol, Guilin 541004, Guangxi, Peoples R China
[2] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
关键词
COMPUTATION;
D O I
10.1155/2014/267042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two new algorithms are proposed to compute the nonsingular square root of a matrix A. Convergence theorems and stability analysis for these new algorithms are given. Numerical results show that these new algorithms are feasible and effective.
引用
收藏
页数:7
相关论文
共 24 条
[11]   NEWTON METHOD FOR THE MATRIX SQUARE ROOT [J].
HIGHAM, NJ .
MATHEMATICS OF COMPUTATION, 1986, 46 (174) :537-549
[12]   Stable iterations for the matrix square root [J].
Higham, NJ .
NUMERICAL ALGORITHMS, 1997, 15 (02) :227-242
[13]   FASTER METHOD OF COMPUTING SQUARE ROOT OF A MATRIX [J].
HOSKINS, WD ;
WALTON, DJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (03) :494-495
[14]   Uniqueness of matrix square roots under a numerical range condition [J].
Johnson, CR ;
Okubo, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 341 (1-3) :195-199
[15]  
Krasnoselskii M. A., 1972, Approximate Solutions of Operator Equations
[16]  
Laasonen P., 1958, MATH TABLES AIDS COM, V12, P109
[17]   The computation of the principal square roots of centrosymmetric H-matrices [J].
Liu, Zhong-Yun ;
Chen, Hui-Jiong ;
Cao, Han-Dong .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) :319-329
[18]   Computing the square roots of matrices with central symmetry [J].
Liu, Zhongyun ;
Zhang, Yulin ;
Rui Ralha .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) :715-726
[20]  
Ortega J. M., 2008, ITERATIVE SOLUTION N