Newton's Method for the Matrix Nonsingular Square Root

被引:2
作者
Li, Chun-Mei [1 ]
Shen, Shu-Qian [2 ]
机构
[1] Guilin Univ Elect Technol, Guilin 541004, Guangxi, Peoples R China
[2] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
关键词
COMPUTATION;
D O I
10.1155/2014/267042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two new algorithms are proposed to compute the nonsingular square root of a matrix A. Convergence theorems and stability analysis for these new algorithms are given. Numerical results show that these new algorithms are feasible and effective.
引用
收藏
页数:7
相关论文
共 24 条
[1]  
[Anonymous], 1974, Linear Multilinear Algebra, DOI [10.1080/03081087408817029, DOI 10.1080/03081087408817029]
[2]   A SCHUR METHOD FOR THE SQUARE ROOT OF A MATRIX [J].
BJORCK, A ;
HAMMARLING, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 52-3 (JUL) :127-140
[3]   FAST COMPUTATION OF THE NTH ROOT [J].
CHEN, SG ;
HSIEH, PY .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 17 (10) :1423-1427
[4]   Approximating the logarithm of a matrix to specified accuracy [J].
Cheng, SH ;
Higham, NJ ;
Kenney, CS ;
Laub, AJ .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 22 (04) :1112-1125
[5]  
Denman ED., 1976, Appl. Math. Comput, V2, P63, DOI DOI 10.1016/0096-3003(76)90020-5
[6]   Computational techniques for real logarithms of matrices [J].
Dieci, L ;
Morini, B ;
Papini, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (03) :570-593
[8]   SOLUTION OF THE SYLVESTER MATRIX EQUATION AXB(T)+CXD(T)=E [J].
GARDINER, JD ;
LAUB, AJ ;
AMATO, JJ ;
MOLER, CB .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1992, 18 (02) :223-231
[9]  
Guo D. J., 2009, NONLINEAR FUNCTIONAL
[10]   A power method for computing square roots of complex matrices [J].
Hasan, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) :393-405