MULTIPLE RANDOM WALKS IN RANDOM REGULAR GRAPHS

被引:63
作者
Cooper, Colin [1 ]
Frieze, Alan [2 ]
Radzik, Tomasz [1 ]
机构
[1] Kings Coll London, Dept Comp Sci, London WC2R 2LS, England
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
random walks; random regular graphs; multiple walks; COVER TIME;
D O I
10.1137/080729542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of multiple random walks on a graph under various assumptions of interaction between the particles. To give precise results, we make the analysis for random regular graphs. The cover time of a random walk on a random r-regular graph was studied in [C. Cooper and A. Frieze, SIAM J. Discrete Math., 18 (2005), pp. 728-740], where it was shown with high probability (whp) that for r >= 3 the cover time is asymptotic to theta(r)n ln n, where theta(r) = ( r - 1)/( r - 2). In this paper we prove the following (whp) results, arising from the study of multiple random walks on a random regular graph G. For k independent walks on G, the cover time C-G(k) is asymptotic to C-G/k, where C-G is the cover time of a single walk. For most starting positions, the expected number of steps before any of the walks meet is theta(r)n/((k)(2)). If the walks can communicate when meeting at a vertex, we show that, for most starting positions, the expected time for k walks to broadcast a single piece of information to each other is asymptotic to 2 lnk/k theta(r)n as k, n -> infinity. We also establish properties of walks where there are two types of particles, predator and prey, or where particles interact when they meet at a vertex by coalescing or by annihilating each other. For example, the expected extinction time of k explosive particles (k even) tends to (2 ln 2)theta(r)n as k -> infinity. The case of n coalescing particles, where one particle is initially located at each vertex, corresponds to a voter model defined as follows: Initially each vertex has a distinct opinion, and at each step each vertex changes its opinion to that of a random neighbor. The expected time for a unique opinion to emerge is the same as the expected time for all the particles to coalesce, which is asymptotic to 2 theta(r)n. Combining results from the predator-prey and multiple random walk models allows us to compare expected detection times of all prey in the following scenarios: Both the predator and the prey move randomly, the prey moves randomly and the predators stay fixed, and the predators move randomly and the prey stays fixed. In all cases, with k predators and l prey the expected detection time is theta(r)H(l)n/k, where H-l is the lth harmonic number.
引用
收藏
页码:1738 / 1761
页数:24
相关论文
共 18 条
[1]   SOME INEQUALITIES FOR REVERSIBLE MARKOV-CHAINS [J].
ALDOUS, DJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 25 (JUN) :564-576
[2]  
Aleliunas Romas., 1979, Proceedings of the 20th Symposium on Foundations of Computer Science (FOCS), P218, DOI [10.1109/SFCS.1979.34, DOI 10.1109/SFCS.1979.34]
[3]  
Alon N, 2008, SPAA'08: PROCEEDINGS OF THE TWENTIETH ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, P119
[4]  
[Anonymous], Reversible Markov Chains and Random Walks on Graphs
[5]  
Broder A. Z., 1989, Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, P543, DOI 10.1145/73007.73059
[6]   The cover time of random regular graphs [J].
Cooper, C ;
Frieze, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (04) :728-740
[7]  
COOPER C, COMPETITION IN PRESS
[8]   The cover time of the giant component of a random graph [J].
Cooper, Colin ;
Frieze, Alan .
RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (04) :401-439
[9]   The cover time of the preferential attachment graph [J].
Cooper, Colin ;
Frieze, Alan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (02) :269-290
[10]   COLLISIONS AMONG RANDOM-WALKS ON A GRAPH [J].
COPPERSMITH, D ;
TETALI, P ;
WINKLER, P .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (03) :363-374