Constructive error analysis of a full-discrete finite element method for the heat equation

被引:4
作者
Hashimoto, Kouji [1 ]
Kimura, Takuma [2 ]
Minamoto, Teruya [2 ]
Nakao, Mitsuhiro T. [3 ]
机构
[1] Nakainum Ciakuen Jr Coll, Div Infant Educ, Fukuoka, Fukuoka 8140198, Japan
[2] Saga Univ, Dept Informat Sci, Saga 8408502, Japan
[3] Waseda Univ, Fac Sci & Engn, Tokyo 1698555, Japan
关键词
Constructive error analysis; Finite element method; Heat equation;
D O I
10.1007/s13160-019-00362-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new full-discrete finite element method for the heat equation, and show the numerical stability of the method by verified computations. Since, in the error analysis, we use the constructive error estimates proposed by Nakao et al. (SIAM J Numer Anal 51(3):1525-1541, 2013) this work is considered as an extension of that paper. We emphasize that the concerned scheme seems to use the quite standard Galerkin method and is easy to implement for evolutionary equations compared with previous ones. In the constructive error estimates, we effectively use the numerical computations with guaranteed accuracy.
引用
收藏
页码:777 / 790
页数:14
相关论文
共 8 条
[1]   A posteriori estimates of inverse operators for initial value problems in linear ordinary differential equations [J].
Kinoshita, T. ;
Kimura, T. ;
Nakao, M. T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) :1622-1636
[2]   On the a posteriori estimates for inverse operators of linear parabolic equations with applications to the numerical enclosure of solutions for nonlinear problems [J].
Kinoshita, Takehiko ;
Kimura, Takuma ;
Nakao, Mitsuhiro T. .
NUMERISCHE MATHEMATIK, 2014, 126 (04) :679-701
[3]   CONSTRUCTIVE A PRIORI ERROR ESTIMATES FOR A FULL DISCRETE APPROXIMATION OF THE HEAT EQUATION [J].
Nakao, Mitsuhiro T. ;
Kimura, Takuma ;
Kinoshita, Takehiko .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) :1525-1541
[4]   SOLVING NONLINEAR PARABOLIC PROBLEMS WITH RESULT VERIFICATION .1. ONE-SPACE DIMENSIONAL CASE [J].
NAKAO, MT .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 38 (1-3) :323-334
[5]   On the best constant in the error bound for the H01-projection into piecewise polynomial spaces [J].
Nakao, MT ;
Yamamoto, N ;
Kimura, S .
JOURNAL OF APPROXIMATION THEORY, 1998, 93 (03) :491-500
[6]  
Rump S., 1999, Developments in Reliable Computing, P77, DOI DOI 10.1007/978-94-017-1247-7
[7]  
Schultz M.H., 1973, Spline Analysis
[8]  
Zeidler E., 1990, Nonlinear Functional Analysis and Its Applications, VII/B