Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels

被引:12
|
作者
Hussain, Imtiaz [1 ]
Ma, Xiaofeng [1 ]
Wu, Linlin [2 ]
Luo, Zhenyang [1 ]
机构
[1] Nanjing Forestry Univ, Coll Sci, Dept Chem & Mat Sci, Nanjing 210037, Peoples R China
[2] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 211816, Peoples R China
关键词
Strain sensors; Self-healing; Hydrogel; Natural polymer; Electronic skin; PRESSURE; SENSOR; STRENGTH; TRANSPARENT; COMPOSITE; TOUGHNESS; GEL;
D O I
10.1007/s10570-022-04622-6
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Self-healing hydrogels that mimic human skin and have numerous senses of external tension and temperature are a current topic in science. However, getting skin-compatible performance out of them is still a challenge, which limits their use as skin-like devices. In the current work, various concentrations of hydroxyethyl cellulose (HEC) and iron (III) were used to adjust the mechanical strength, self-healing, and electrically conductive efficiency of the hydrogel sensor at room temperature. The designed hydrogel exhibited robust mechanical strength with a fracture stress of 0.51 MPa, a fracturing strain of 1250%. The hydrogel also showed self-healing efficiency in stress (97%), strain (99%), and toughness (94%) in a 24 h healing time at room temperature without any external intervention. The hydrogel showed about 2.22 x 10(-1) S m(-1) electrical conductivity at room temperature. In the holding-loading stepwise test, the hydrogel displayed stair-like trends and maintained a specific strain for a long time without any change in the Delta R/R-0 %, indicating outstanding resistance stability as a function of distinct stains.
引用
收藏
页码:5725 / 5743
页数:19
相关论文
共 50 条
  • [21] Self-healing, Stretchable, Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors
    Chun-Xia Zhao
    Min Guo
    Jie Mao
    Yun-Tao Li
    Yuan-Peng Wu
    Hua Guo
    Dong Xiang
    Hui Li
    Chinese Journal of Polymer Science, 2023, 41 : 334 - 344
  • [22] Self-healing, adhesive, photothermal responsive, stretchable, and strain-sensitive supramolecular nanocomposite hydrogels based on host-guest interactions
    Chen, Shiying
    Nie, Yixuan
    Huang, Yingying
    Yang, Yuxuan
    Chen, Hongyi
    Zhang, Xiongzhi
    POLYMER ENGINEERING AND SCIENCE, 2024, 64 (11): : 5627 - 5636
  • [23] Self-healing, Stretchable, Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors
    Zhao, Chun-Xia
    Guo, Min
    Mao, Jie
    Li, Yun-Tao
    Wu, Yuan-Peng
    Guo, Hua
    Xiang, Dong
    Li, Hui
    CHINESE JOURNAL OF POLYMER SCIENCE, 2023, 41 (03) : 334 - 344
  • [24] Self-healing, Stretchable, Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors
    Chun-Xia Zhao
    Min Guo
    Jie Mao
    Yun-Tao Li
    Yuan-Peng Wu
    Hua Guo
    Dong Xiang
    Hui Li
    Chinese Journal of Polymer Science, 2023, (03) : 334 - 344
  • [25] Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel
    Mao, Jie
    Zhao, Chunxia
    Li, Yuntao
    Xiang, Dong
    Wang, Zhixuan
    COMPOSITES COMMUNICATIONS, 2020, 17 : 22 - 27
  • [26] Self-healing cellulose-based flexible sensor: A review
    Zhang, Yue-hong
    Lei, Qin-yang
    Liu, Rui-jing
    Zhang, Lei
    Lyu, Bin
    Liu, Lei-peng
    Ma, Jian-zhong
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 206
  • [27] Highly sensitive and self-healing conductive hydrogels fabricated from cationic cellulose nanofiber-dispersed liquid metal for strain sensors
    Wu, Shihao
    Wang, Bingyan
    Chen, Duo
    Liu, Xiaona
    Wang, Huili
    Song, Zhaoping
    Yu, Dehai
    Li, Guodong
    Ge, Shaohua
    Liu, Wenxia
    SCIENCE CHINA-MATERIALS, 2023, 66 (05) : 1923 - 1933
  • [28] A cellulose-based film with self-healing performance for light management
    Li, Shuang
    Cui, Boyu
    Jia, Xue
    Wang, Weihong
    Cui, Yutong
    Ding, Jiayan
    Fang, Yiqun
    Song, Yongming
    Zhang, Xianquan
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 212
  • [29] Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels
    Liu, Shunli
    Kang, Mengmeng
    Li, Kewen
    Yao, Fang
    Oderinde, Olayinka
    Fu, Guodong
    Xu, Liqun
    CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 2222 - 2230
  • [30] Ultrafast Self-Healing, Reusable, and Conductive Polysaccharide-Based Hydrogels for Sensitive Ionic Sensors
    Wang, Yanling
    Huang, Hailong
    Wu, Jieli
    Han, Lu
    Yang, Zhongli
    Jiang, Zhicheng
    Wang, Rui
    Huang, Zhijian
    Xu, Min
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (50) : 18506 - 18518