Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels

被引:12
|
作者
Hussain, Imtiaz [1 ]
Ma, Xiaofeng [1 ]
Wu, Linlin [2 ]
Luo, Zhenyang [1 ]
机构
[1] Nanjing Forestry Univ, Coll Sci, Dept Chem & Mat Sci, Nanjing 210037, Peoples R China
[2] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 211816, Peoples R China
关键词
Strain sensors; Self-healing; Hydrogel; Natural polymer; Electronic skin; PRESSURE; SENSOR; STRENGTH; TRANSPARENT; COMPOSITE; TOUGHNESS; GEL;
D O I
10.1007/s10570-022-04622-6
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Self-healing hydrogels that mimic human skin and have numerous senses of external tension and temperature are a current topic in science. However, getting skin-compatible performance out of them is still a challenge, which limits their use as skin-like devices. In the current work, various concentrations of hydroxyethyl cellulose (HEC) and iron (III) were used to adjust the mechanical strength, self-healing, and electrically conductive efficiency of the hydrogel sensor at room temperature. The designed hydrogel exhibited robust mechanical strength with a fracture stress of 0.51 MPa, a fracturing strain of 1250%. The hydrogel also showed self-healing efficiency in stress (97%), strain (99%), and toughness (94%) in a 24 h healing time at room temperature without any external intervention. The hydrogel showed about 2.22 x 10(-1) S m(-1) electrical conductivity at room temperature. In the holding-loading stepwise test, the hydrogel displayed stair-like trends and maintained a specific strain for a long time without any change in the Delta R/R-0 %, indicating outstanding resistance stability as a function of distinct stains.
引用
收藏
页码:5725 / 5743
页数:19
相关论文
共 50 条
  • [1] Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels
    Imtiaz Hussain
    Xiaofeng Ma
    Linlin Wu
    Zhenyang Luo
    Cellulose, 2022, 29 : 5725 - 5743
  • [2] Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties
    Chen, Minzhi
    Quan, Qi
    You, Zhenping
    Dong, Yue
    Zhou, Xiaoyan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [3] Cellulose nanocomposite tough hydrogels: synergistic self-healing, adhesive and strain-sensitive properties
    Badawi, Mohammed Nujud
    Agrawal, Namrata
    Kumar, Yogesh
    Khan, Mujeeb
    Hatshan, Mohammad Rafe
    Alayyaf, Abdulmajeed Abdullah
    Adil, Syed Farooq
    POLYMER INTERNATIONAL, 2024, 73 (09) : 748 - 760
  • [4] Enhancing the mechanical properties and self-healing efficiency of hydroxyethyl cellulose-based conductive hydrogels via supramolecular interactions
    Hussain, Imtiaz
    Sayed, Sayed Mir
    Liu, Shunli
    Oderinde, Olayinka
    Kang, Mengmeng
    Yao, Fang
    Fu, Guodong
    EUROPEAN POLYMER JOURNAL, 2018, 105 : 85 - 94
  • [5] Highly Stretchable, Strain-Sensitive, and Ionic-Conductive Cellulose-Based Hydrogels for Wearable Sensors
    Tong, Ruiping
    Chen, Guangxue
    Tian, Junfei
    He, Minghui
    POLYMERS, 2019, 11 (12)
  • [6] Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor
    Pei, Zhaoxia
    Yu, Zhiwei
    Li, Mengnan
    Bai, Liangjiu
    Wang, Wenxiang
    Chen, Hou
    Yang, Huawei
    Wei, Donglei
    Yang, Lixia
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 179 : 324 - 332
  • [7] Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels
    Li, Ruirui
    Ren, Jie
    Zhang, Minmin
    Li, Meng
    Li, Yan
    Yang, Wu
    BIOMACROMOLECULES, 2024, 25 (02) : 614 - 625
  • [8] Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels
    Chen, Yong Mei
    Sun, Lei
    Yang, Shao An
    Shi, Lei
    Zheng, Wen Jiang
    Wei, Zhao
    Hu, Chen
    EUROPEAN POLYMER JOURNAL, 2017, 94 : 501 - 510
  • [9] Ultra-stretchable, fast self-healing, adhesive, and strain-sensitive wearable sensors based on ionic conductive hydrogels
    Ren, Jie
    Zhang, Wenjing
    Li, Ruirui
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (26) : 11705 - 11716
  • [10] Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties
    Shao, Changyou
    Wang, Meng
    Meng, Lei
    Chang, Huanliang
    Wang, Bo
    Xu, Feng
    Yang, Jun
    Wan, Pengbo
    CHEMISTRY OF MATERIALS, 2018, 30 (09) : 3110 - 3121