Carbon Allotropes as Anode Material for Lithium-Ion Batteries

被引:78
作者
Rajkamal, A. [1 ]
Thapa, Ranjit [2 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Mumbai 400076, Maharashtra, India
[2] SRM Univ AP, Dept Phys, Amaravati 522502, Andhra Pradesh, India
来源
ADVANCED MATERIALS TECHNOLOGIES | 2019年 / 4卷 / 10期
关键词
anodes; batteries; carbon materials; energy storage; hybridization; lithium ion batteries; OF-THE-ART; CATHODE MATERIAL; ENERGY-STORAGE; GRAPHENE MONOLITH; METALLIC CARBON; PENTA-GRAPHENE; SN ANODES; LI; PERFORMANCE; INTERCALATION;
D O I
10.1002/admt.201900307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Anode materials that exhibit high energy density, high power density, long life cycle, and better safety profile for lithium-ion batteries are necessary for the development of electric vehicles. Computational and experimental studies to describe the relevant aspects of carbon allotropes as anode materials are discussed, toward the significant improvement of specific power and energy capacity. The role of types of carbon ring and mixed hybridization (sp, sp(2), and sp(3)) in carbon-based anode materials for Li storage explored. An overview is provided on the procedures used to analyze the storage properties of anode materials using first-principles theoretical methods such as intercalation energy, volume expansion, and open circuit voltage. Finally, the progress, importance, design, and the challenges of carbon-based anode materials are comprehensively discussed.
引用
收藏
页数:20
相关论文
共 185 条
[41]   Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures [J].
Haley, MM ;
Brand, SC ;
Pak, JJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1997, 36 (08) :836-838
[42]   Lithium storage on carbon nitride, graphenylene and inorganic graphenylene [J].
Hankel, Marlies ;
Searles, Debra J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (21) :14205-14215
[43]   Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries [J].
Hou, Junbo ;
Shao, Yuyan ;
Ellis, Michael W. ;
Moore, Robert B. ;
Yi, Baolian .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (34) :15384-15402
[44]   Theoretical prediction of honeycomb carbon as Li-ion batteries anode material [J].
Hu, Junping ;
Zhang, Xiaohang .
EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (05)
[45]   A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method [J].
Huang, Bin ;
Li, Xinhai ;
Wang, Zhixing ;
Guo, Huajun ;
Shen, Li ;
Wang, Jiexi .
JOURNAL OF POWER SOURCES, 2014, 252 :200-207
[46]   Deregulation of the OsmiR160 Target Gene OsARF18 Causes Growth and Developmental Defects with an Alteration of Auxin Signaling in Rice [J].
Huang, Jian ;
Li, Zhiyong ;
Zhao, Dazhong .
SCIENTIFIC REPORTS, 2016, 6
[47]   Electronic Properties of the Biphenylene Sheet and Its One-Dimensional Derivatives [J].
Hudspeth, Mathew A. ;
Whitman, Brandon W. ;
Barone, Veronica ;
Peralta, Juan E. .
ACS NANO, 2010, 4 (08) :4565-4570
[48]   A binder-free Ge-nanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries [J].
Hwang, In-Sung ;
Kim, Jae-Chan ;
Seo, Seung-Deok ;
Lee, Sungjun ;
Lee, Jong-Heun ;
Kim, Dong-Wan .
CHEMICAL COMMUNICATIONS, 2012, 48 (56) :7061-7063
[49]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[50]   Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties [J].
Islam, M. Saiful ;
Fisher, Craig A. J. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (01) :185-204