Phase synchronization of chaotic oscillations in terms of periodic orbits

被引:110
作者
Pikovsky, A [1 ]
Zaks, M [1 ]
Rosenblum, M [1 ]
Osipov, G [1 ]
Kurths, J [1 ]
机构
[1] Univ Potsdam, Dept Phys, D-14415 Potsdam, Germany
关键词
D O I
10.1063/1.166265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider phase synchronization of chaotic continuous-time oscillator by periodic external force. Phase-locking regions are defined for unstable periodic cycles embedded in chaos, and synchronization is described in terms of these regions. A special flow construction is used to derive a simple discrete-time model of the phenomenon. It allows to describe quantitatively the intermittency at the transition to phase synchronization. (C) 1997 American Institute of Physics.
引用
收藏
页码:680 / 687
页数:8
相关论文
共 29 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]  
Andronov A., 1966, Theory of Oscillations
[3]  
ARNOLD VI, 1965, T AM MATH SOC, V42, P213
[4]  
Blekhman II., 1971, Synchronization of dynamical systems[M]
[5]  
Blekhman II., 1988, Synchronization in science and technology
[6]   QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE [J].
BONDESON, A ;
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2103-2106
[7]  
Cornfeld I. P., 1982, Ergodic Theory
[8]   STRANGE NONCHAOTIC ATTRACTOR IN A QUASI-PERIODICALLY FORCED CIRCLE MAP [J].
FEUDEL, U ;
KURTHS, J ;
PIKOVSKY, AS .
PHYSICA D, 1995, 88 (3-4) :176-186
[9]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[10]  
GREBOGI C, 1985, ERGOD THEOR DYN SYST, V5, P341