Fuzzy c-means clustering algorithm for performance improvement of ENN

被引:3
|
作者
Zhou, Yu [1 ]
Ren, Qinchai [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Elect Power, Zhengzhou 450045, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy c-means (FCM); Extension neural network (ENN); Fuzzy extension neural network (FENN); Initial centers; Cluster centers; EXTENSION NEURAL-NETWORK; FAULT-DIAGNOSIS; ATTRIBUTES; STRATEGY;
D O I
10.1007/s10586-017-1346-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, with the purpose of improving the performance of extension neural network (ENN), we use Fuzzy c-means (FCM) clustering algorithm to locate the initial centers of every class before the training. In traditional ENN, the initial centers are defined simply by the average values of the minimum and maximum of every characteristic. Our proposed FENN (FCM-ENN) in this paper is different from tradition ENN, and the initial centers of every class are determined by the cluster centers of FCM clustering algorism. Our proposed strategy can reflect the actual training data distribution information, thereby the performance of ENN by using this strategy is more approach to practical situation. Compared with traditional ENN, the proposed FENN has a better performance. Experimental results from three different examples, including an artificial data set, a benchmark data set and a practical application, verify the effectiveness and applicability of our proposed work.
引用
收藏
页码:11163 / 11174
页数:12
相关论文
共 50 条
  • [1] Fuzzy c-means clustering algorithm for performance improvement of ENN
    Yu Zhou
    Qinchai Ren
    Cluster Computing, 2019, 22 : 11163 - 11174
  • [2] Improvement and optimization of a Fuzzy C-Means clustering algorithm
    Shen, Y
    Shi, H
    Zhang, JQ
    IMTC/2001: PROCEEDINGS OF THE 18TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3: REDISCOVERING MEASUREMENT IN THE AGE OF INFORMATICS, 2001, : 1430 - 1433
  • [3] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [4] An efficient Fuzzy C-Means clustering algorithm
    Hung, MC
    Yang, DL
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 225 - 232
  • [5] An Improved Fuzzy C-means Clustering Algorithm
    Duan, Lingzi
    Yu, Fusheng
    Zhan, Li
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1199 - 1204
  • [6] A novel fuzzy C-means clustering algorithm
    Li, Cuixia
    Yu, Jian
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 510 - 515
  • [7] The global Fuzzy C-Means clustering algorithm
    Wang, Weina
    Zhang, Yunjie
    Li, Yi
    Zhang, Xiaona
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 3604 - +
  • [8] An Accelerated Fuzzy C-Means clustering algorithm
    Hershfinkel, D
    Dinstein, I
    APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 : 41 - 52
  • [9] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [10] Soil clustering by fuzzy c-means algorithm
    Goktepe, AB
    Altun, S
    Sezer, A
    ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (10) : 691 - 698