Essential dimension of group schemes over a local scheme

被引:3
作者
Tossici, Dajano [1 ]
机构
[1] Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
关键词
Group schemes; Torsors; Essential dimension;
D O I
10.1016/j.jalgebra.2017.07.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we develop the theory of essential dimension of group schemes over an integral base. Shortly we concentrate over a local base. As a consequence of our theory we give a result of invariance of the essential dimension over a field. The case of group schemes over a discrete valuation ring is discussed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 27 条
  • [1] [Anonymous], 2010, ALGEBRAIC GEOMETRY S, DOI DOI 10.1007/978-3-658-30733-2
  • [2] [Anonymous], 1971, GRUNDLEHREN MATH WIS
  • [3] [Anonymous], 1973, Sur les groupes algebriques
  • [4] [Anonymous], 1980, PRINCETON MATH SERIE
  • [5] [Anonymous], 1967, Mathematical Publications of IHES
  • [6] Berhuy G., 2003, Doc. Math, V8, P279
  • [7] Bosch S., 1990, N RON MODEL
  • [8] Bourbaki N., 2007, ELEMENTS MATH
  • [9] Essential dimension of moduli of curves and other algebraic stacks
    Brosnan, Patrick
    Reichstein, Zinovy
    Vistoli, Angelo
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (04) : 1079 - 1112
  • [10] On the essential dimension of a finite group
    Buhler, J
    Reichstein, Z
    [J]. COMPOSITIO MATHEMATICA, 1997, 106 (02) : 159 - 179