Carnot geometry and the resolvent of the sub-Laplacian for the Heisenberg group

被引:1
作者
Perry, PA [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
carnot geometry; sub-Laplacian; semiclassical asymptotics; resolvent kernel;
D O I
10.1081/PDE-120020495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain an explicit representation formula for the sub-Laplacian on the isotropic, three-dimensional Heisenberg group. Using the formula we obtain themeromorphic continuation of the resolvent to the logarithmic plane, the existence of boundary values in the continuous spectrum, and semiclassical asymptotics of the resolvent kernel. The asymptotic formulas show the contribution of each Hamiltonian path in Carnot geometry to the spatial and high-energy asymptotics of the resolvent (convolution) kernel for the sub-Laplacian.
引用
收藏
页码:745 / 769
页数:25
相关论文
共 9 条