Drug-resistant HIV-1 protease regains functional dynamics through cleavage site coevolution

被引:6
作者
Ozer, Nevra [1 ,2 ]
Ozen, Aysegul [3 ]
Schiffer, Celia A. [3 ]
Haliloglu, Turkan [1 ,2 ]
机构
[1] Bogazici Univ, Polymer Res Ctr, TR-34342 Istanbul, Turkey
[2] Bogazici Univ, Dept Chem Engn, TR-34342 Istanbul, Turkey
[3] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA USA
来源
EVOLUTIONARY APPLICATIONS | 2015年 / 8卷 / 02期
关键词
coevolution; elastic network model; fluctuations; HIV-1; protease; NORMAL-MODE ANALYSIS; MOLECULAR-DYNAMICS; VIBRATIONAL DYNAMICS; SINGLE-PARAMETER; FLEXIBILITY; PROTEINS; EVOLUTION; SEQUENCE; FLUCTUATIONS; MOTIONS;
D O I
10.1111/eva.12241
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drug resistance is caused by mutations that change the balance of recognition favoring substrate cleavage over inhibitor binding. Here, a structural dynamics perspective of the regained wild-type functioning in mutant HIV-1 proteases with coevolution of the natural substrates is provided. The collective dynamics of mutant structures of the protease bound to p1-p6 and NC-p1 substrates are assessed using the Anisotropic Network Model (ANM). The drug-induced protease mutations perturb the mechanistically crucial hinge axes that involve key sites for substrate binding and dimerization and mainly coordinate the intrinsic dynamics. Yet with substrate coevolution, while the wild-type dynamic behavior is restored in both p1-p6 ((LP1F)p1-p6(D30N/N88D)) and NC-p1 ((NC)-N-AP2V-p1(V82A)) bound proteases, the dynamic behavior of the NC-p1 bound protease variants (NC-p1(V82A) and (NC)-N-AP2V-p1(V82A)) rather resemble those of the proteases bound to the other substrates, which is consistent with experimental studies. The orientational variations of residue fluctuations along the hinge axes in mutant structures justify the existence of coevolution in p1-p6 and NC-p1 substrates, that is, the dynamic behavior of hinge residues should contribute to the interdependent nature of substrate recognition. Overall, this study aids in the understanding of the structural dynamics basis of drug resistance and evolutionary optimization in the HIV-1 protease system.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 63 条
[11]  
Cui Q., 2005, NORMAL MODE ANAL THE
[12]   Residues crucial for maintaining short paths in network communication mediate signaling in proteins [J].
del Sol, Antonio ;
Fujihashi, Hirotomo ;
Amoros, Dolors ;
Nussinov, Ruth .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0019
[13]   Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors [J].
Doyon, L ;
Croteau, G ;
Thibeault, D ;
Poulin, F ;
Pilote, L ;
Lamarre, D .
JOURNAL OF VIROLOGY, 1996, 70 (06) :3763-3769
[14]   Evolvability is a selectable trait [J].
Earl, DJ ;
Deem, MW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (32) :11531-11536
[15]   Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites [J].
Fehér, A ;
Weber, IT ;
Bagossi, P ;
Boross, P ;
Mahalingam, B ;
Louis, JM ;
Copeland, TD ;
Torshin, IY ;
Harrison, RW ;
Tözsér, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (16) :4114-4120
[16]   MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology [J].
Feig, M ;
Karanicolas, J ;
Brooks, CL .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2004, 22 (05) :377-395
[17]   On the role of frustration in the energy landscapes of allosteric proteins [J].
Ferreiro, Diego U. ;
Hegler, Joseph A. ;
Komives, Elizabeth A. ;
Wolynes, Peter G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (09) :3499-3503
[18]  
Friedland G. D., 2009, PLOS COMPUTATIONAL B, V5, P1
[19]   Structural dynamics flexibility informs function and evolution at a proteome scale [J].
Gerek, Zeynep Nevin ;
Kumar, Sudhir ;
Ozkan, Sefika Banu .
EVOLUTIONARY APPLICATIONS, 2013, 6 (03) :423-433
[20]   Exploring the range of protein flexibility, from a structural proteomics perspective [J].
Gerstein, M ;
Echols, N .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2004, 8 (01) :14-19