Invariant manifolds for stochastic wave equations

被引:71
作者
Lu, Kening
Schmalfuss, Bjoern
机构
[1] Univ Paderborn, Inst Math, D-33098 Paderborn, Germany
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
stochastic wave equations; random dynamical systems; invariant manifolds; PARTIAL-DIFFERENTIAL-EQUATIONS; DYNAMICAL-SYSTEMS; SPACES; FLOWS;
D O I
10.1016/j.jde.2006.09.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of stochastic wave equations with nonlinear multiplicative noise. We first show that these stochastic wave equations generate random dynamical systems (or stochastic flows) by transforming the stochastic wave equations to random wave equations through a stationary random homeomorphism. Then, we establish the existence of random invariant manifolds for the random wave equations. Due to the temperedness of the nonlinearity, we obtain only local invariant manifolds no matter how large the spectral gap is unlike the deterministic cases. Based on these random dynamical systems, we prove the existence of random invariant manifolds in a tempered neighborhood of an equilibrium. Finally, we show that the images of these invariant manifolds under the inverse stationary transformation give invariant manifolds for the stochastic wave equations. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:460 / 492
页数:33
相关论文
共 29 条
[1]  
Arnold L., 1998, RANDOM DYNAMICAL SYS, DOI 10.1007/978-3-662-12878-7
[2]  
Bensoussan A., 1995, Stochastics Stochastics Rep, V53, P13, DOI [10.1080/17442509508833981, DOI 10.1080/17442509508833981]
[3]   Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations [J].
Caraballo, T ;
Chueshov, I ;
Langa, JA .
NONLINEARITY, 2005, 18 (02) :747-767
[4]   Exponentially stable stationary solutions for stochastic evolution equations and their perturbation [J].
Caraballo, T ;
Kloeden, PE ;
Schmalfuss, B .
APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 50 (03) :183-207
[5]  
Castaing C., 1977, LECT NOTES MATH, DOI DOI 10.1007/BFB0087686
[6]   SMOOTH INVARIANT FOLIATIONS IN INFINITE DIMENSIONAL SPACES [J].
CHOW, SN ;
LIN, XB ;
LU, KN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (02) :266-291
[7]   INVARIANT-MANIFOLDS FOR FLOWS IN BANACH-SPACES [J].
CHOW, SN ;
LU, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 74 (02) :285-317
[8]  
Chueshov ID., 2001, J Dyn Diff Equat, V13, P355, DOI DOI 10.1023/A:1016684108862
[9]  
Da Prato G., 1996, STOCHASTICS STOCHAST, V59, P305, DOI DOI 10.1080/17442509608834094
[10]  
Da Prato Giuseppe, 2014, Stochastic equations in infinite dimensions, DOI [DOI 10.1017/CBO9781107295513, 10.1017/CBO9780511666223]