Dynamical Singularities of Floquet Higher-Order Topological Insulators

被引:115
作者
Hu, Haiping [1 ,2 ]
Huang, Biao [2 ]
Zhao, Erhai [1 ,3 ]
Liu, W. Vincent [2 ,4 ,5 ,6 ,7 ]
机构
[1] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
[2] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[3] George Mason Univ, Quantum Mat Ctr, Fairfax, VA 22030 USA
[4] Shanghai Jiao Tong Univ, Sch Phys & Astron, Wilczek Quantum Ctr, Shanghai 200240, Peoples R China
[5] Shanghai Jiao Tong Univ, TD Lee Inst, Shanghai 200240, Peoples R China
[6] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[7] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
关键词
All Open Access; Green;
D O I
10.1103/PhysRevLett.124.057001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a versatile framework to dynamically generate Floquet higher-order topological insulators by multistep driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to illustrate this procedure to yield Floquet quadrupole and octupole insulators with zero- and/or pi-corner modes protected by mirror symmetries. Furthermore, we introduce dynamical topological invariants from the full unitary return map and show its phase bands contain Weyl singularities whose topological charges form dynamical multipole moments in the Brillouin zone. Combining them with the topological index of a Floquet Hamiltonian gives a pair of Z(2) invariant nu(0) and nu(pi) which fully characterize the higher-order topology and predict the appearance of zero- and pi-corner modes. Our work establishes a systematic route to construct and characterize Floquet higher-order topological phases.
引用
收藏
页数:6
相关论文
共 51 条
[21]   Lattice models with exactly solvable topological hinge and corner states [J].
Kunst, Flore K. ;
van Miert, Guido ;
Bergholtz, Emil J. .
PHYSICAL REVIEW B, 2018, 97 (24)
[22]   Counter-propagating Edge Modes and Topological Phases of a Kicked Quantum Hall System [J].
Lababidi, Mahmoud ;
Satija, Indubala I. ;
Zhao, Erhai .
PHYSICAL REVIEW LETTERS, 2014, 112 (02)
[23]   Reflection-Symmetric Second-Order Topological Insulators and Superconductors [J].
Langbehn, Josias ;
Peng, Yang ;
Trifunovic, Luka ;
von Oppen, Felix ;
Brouwer, Piet W. .
PHYSICAL REVIEW LETTERS, 2017, 119 (24)
[24]   Direct prediction of corner state configurations from edge winding numbers in two- and three-dimensional chiral-symmetric lattice systems [J].
Li, Linhu ;
Umer, Muhammad ;
Gong, Jiangbin .
PHYSICAL REVIEW B, 2018, 98 (20)
[25]   Floquet topological insulator in semiconductor quantum wells [J].
Lindner, Netanel H. ;
Refael, Gil ;
Galitski, Victor .
NATURE PHYSICS, 2011, 7 (06) :490-495
[26]   Higher-Order Topological Corner States Induced by Gain and Loss [J].
Luo, Xi-Wang ;
Zhang, Chuanwei .
PHYSICAL REVIEW LETTERS, 2019, 123 (07)
[27]   Photonic quadrupole topological phases [J].
Mittal, Sunil ;
Orre, Venkata Vikram ;
Zhu, Guanyu ;
Gorlach, Maxim A. ;
Poddubny, Alexander ;
Hafezi, Mohammad .
NATURE PHOTONICS, 2019, 13 (10) :692-+
[28]   Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices [J].
Miyake, Hirokazu ;
Siviloglou, Georgios A. ;
Kennedy, Colin J. ;
Burton, William Cody ;
Ketterle, Wolfgang .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[29]  
Mondragon-Shem I., ARXIV181110632V2
[30]   Topological singularities and the general classification of Floquet-Bloch systems [J].
Nathan, Frederik ;
Rudner, Mark S. .
NEW JOURNAL OF PHYSICS, 2015, 17