On the ruin probabilities of a bidimensional perturbed risk model

被引:66
作者
Li, Junhai
Liu, Zaiming
Tang, Qihe
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[2] Cent S Univ, Inst Probabil & Stat, Changsha 410075, Hunan, Peoples R China
[3] Henan Univ Technol, Dept Math, Zhengzhou 450007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
bidimensional risk model; diffusion; Farlie-Gumbel-Morgenstern distribution; martingale; Poisson process; ruin probability; subexponentiality;
D O I
10.1016/j.insmatheco.2006.10.012
中图分类号
F [经济];
学科分类号
02 ;
摘要
We follow some recent works to study the ruin probabilities of a bidimensional perturbed insurance risk model. For the case of light-tailed claims, using the martingale technique we obtain for the infinite-time ruin probability a Lundberg-type upper bound, which captures certain information of dependence between the two marginal surplus processes. For the case of heavy-tailed claims, we derive for the finite-time ruin probability an explicit asymptotic estimate. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 195
页数:11
相关论文
共 15 条
[1]   Compound bivariate Lagrangian Poisson distributions [J].
Ambagaspitiya, RS .
INSURANCE MATHEMATICS & ECONOMICS, 1998, 23 (01) :21-31
[2]   Multivariate risk model of phase type [J].
Cai, J ;
Li, HJ .
INSURANCE MATHEMATICS & ECONOMICS, 2005, 36 (02) :137-152
[3]   Some results on ruin probabilities in a two-dimensional risk model [J].
Chan, WS ;
Yang, HL ;
Zhang, LZ .
INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (03) :345-358
[4]   The discrete-time risk model with correlated classes of business [J].
Cossette, H ;
Marceau, E .
INSURANCE MATHEMATICS & ECONOMICS, 2000, 26 (2-3) :133-149
[5]  
Dhaene J., 1996, ASTIN BULL, V26, P201, DOI DOI 10.2143/AST.26.2.563219
[6]   RISK THEORY FOR THE COMPOUND POISSON-PROCESS THAT IS PERTURBED BY DIFFUSION [J].
DUFRESNE, F ;
GERBER, HU .
INSURANCE MATHEMATICS & ECONOMICS, 1991, 10 (01) :51-59
[7]  
KAAS R, 2003, N AM ACTUAR J, V7, P57, DOI DOI 10.1080/10920277.2003.10596103
[8]  
Kl├a┬╝ppelberg P.C., 1997, MODELLING EXTREMAL E
[9]  
Kotz S., 2000, CONTINUOUS MULTIVARI, V1
[10]  
Nelsen R. B., 1999, INTRO COPULAS