NONLOCAL CONSERVATION LAWS IN BOUNDED DOMAINS

被引:27
作者
Colombo, Rinaldo M. [1 ]
Rossi, Elena [2 ]
机构
[1] Univ Brescia, INdAM Unit, I-25123 Brescia, Italy
[2] INRIA, Sophia Antipolis Mediterranee, F-06902 Sophia Antipolis, France
关键词
crowd dynamics; macroscopic pedestrian model; nonlocal conservation laws; CROWD DYNAMICS; WELL-POSEDNESS; BALANCE LAWS; MODEL; FLOW; SCHEMES;
D O I
10.1137/18M1171783
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The well posedness for a class of nonlocal systems of conservation laws in a bounded domain is proved and various stability estimates are provided. This construction is motivated by the modeling of crowd dynamics, which also leads to defining a nonlocal operator adapted to the presence of a boundary. Numerical integrations show that the resulting model provides qualitatively reasonable solutions.
引用
收藏
页码:4041 / 4065
页数:25
相关论文
共 29 条
[1]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[2]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[3]   ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS [J].
Amorim, Paulo ;
Colombo, Rinaldo M. ;
Teixeira, Andreia .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :19-37
[4]  
[Anonymous], 1983, Elliptic Partial Equations of Second Order
[5]  
Anzellotti G., 1978, Rend. Semin. Mat. Univ. Padova, V60, P1
[6]   A model for the dynamics of large queuing networks and supply chains [J].
Armbruster, D ;
Degond, P ;
Ringhofer, C .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (03) :896-920
[7]   Analytic structure of two 1D-transport equations with nonlocal fluxes [J].
Baker, GR ;
Li, X ;
Morlet, AC .
PHYSICA D, 1996, 91 (04) :349-375
[8]  
Bardos C., 1979, COMMUN PART DIFF EQ, V4, P1017, DOI DOI 10.1080/03605307908820117
[9]   MODELING CROWD DYNAMICS FROM A COMPLEX SYSTEM VIEWPOINT [J].
Bellomo, Nicola ;
Piccoli, Benedetto ;
Tosin, Andrea .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22
[10]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885