SFARI genes and where to find them; modelling Autism Spectrum Disorder specific gene expression dysregulation with RNA-seq data

被引:10
作者
Arpi, Magdalena Navarro Torres [1 ]
Simpson, T. Ian [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Informat, 10 Crichton St, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Edinburgh, Ctr Brain Discovery Sci, Simons Initiat Developing Brain SIDB, Edinburgh, Midlothian, Scotland
关键词
RISK;
D O I
10.1038/s41598-022-14077-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Autism Spectrum Disorders (ASD) have a strong, yet heterogeneous, genetic component. Among the various methods that are being developed to help reveal the underlying molecular aetiology of the disease one approach that is gaining popularity is the combination of gene expression and clinical genetic data, often using the SFARI-gene database, which comprises lists of curated genes considered to have causative roles in ASD when mutated in patients. We build a gene co-expression network to study the relationship between ASD-specific transcriptomic data and SFARI genes and then analyse it at different levels of granularity. No significant evidence is found of association between SFARI genes and differential gene expression patterns when comparing ASD samples to a control group, nor statistical enrichment of SFARI genes in gene co-expression network modules that have a strong correlation with ASD diagnosis. However, classification models that incorporate topological information from the whole ASD-specific gene co-expression network can predict novel SFARI candidate genes that share features of existing SFARI genes and have support for roles in ASD in the literature. A statistically significant association is also found between the absolute level of gene expression and SFARI's genes and Scores, which can confound the analysis if uncorrected. We propose a novel approach to correct for this that is general enough to be applied to other problems affected by continuous sources of bias. It was found that only co-expression network analyses that integrate information from the whole network are able to reveal signatures linked to ASD diagnosis and novel candidate genes for the study of ASD, which individual gene or module analyses fail to do. It was also found that the influence of SFARI genes permeates not only other ASD scoring systems, but also lists of genes believed to be involved in other neurodevelopmental disorders.
引用
收藏
页数:15
相关论文
共 52 条
[11]   Network-Based Integrative Analysis of Genomics, Epigenomics and Transcriptomics in Autism Spectrum Disorders [J].
Di Nanni, Noemi ;
Bersanelli, Matteo ;
Cupaioli, Francesca Anna ;
Milanesi, Luciano ;
Mezzelani, Alessandra ;
Mosca, Ettore .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (13)
[12]   BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis [J].
Durinck, S ;
Moreau, Y ;
Kasprzyk, A ;
Davis, S ;
De Moor, B ;
Brazma, A ;
Huber, W .
BIOINFORMATICS, 2005, 21 (16) :3439-3440
[13]   Gene Expression Omnibus: NCBI gene expression and hybridization array data repository [J].
Edgar, R ;
Domrachev, M ;
Lash, AE .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :207-210
[14]   Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes [J].
Feliciano, Pamela ;
Zhou, Xueya ;
Astrovskaya, Irina ;
Turner, Tychele N. ;
Wang, Tianyun ;
Brueggeman, Leo ;
Barnard, Rebecca ;
Hsieh, Alexander ;
Snyder, LeeAnne Green ;
Muzny, Donna M. ;
Sabo, Aniko ;
Gibbs, Richard A. ;
Eichler, Evan E. ;
O'Roak, Brian J. ;
Michaelson, Jacob J. ;
Volfovsky, Natalia ;
Shen, Yufeng ;
Chung, Wendy K. ;
Abbeduto, Leonard ;
Acampado, John ;
Ace, Andrea J. ;
Albright, Charles ;
Alessandri, Michael ;
Amaral, David G. ;
Amatya, Alpha ;
Annett, Robert D. ;
Arriaga, Ivette ;
Bahl, Ethan ;
Balasubramanian, Adithya ;
Bardett, Nicole ;
Bashar, Asif ;
Beaudet, Arthur ;
Beeson, Landon ;
Bernier, Raphael A. ;
Berry-Kravis, Elizabeth ;
Booker, Stephanie ;
Brewster, Stephanie J. ;
Brooks, Elizabeth ;
Butler, Martin E. ;
Butter, Eric M. ;
Callahan, Kristen ;
Camba, Alexies ;
Carpenter, Sarah ;
Carriero, Nicholas ;
Cartner, Lindsey A. ;
Chatha, Ahmad S. ;
Chin, Wubin ;
Clark, Renee D. ;
Cohen, Cheryl ;
Courchesne, Eric .
NPJ GENOMIC MEDICINE, 2019, 4 (1)
[15]   Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap [J].
Gandal, Michael J. ;
Haney, Jillian R. ;
Parikshak, Neelroop N. ;
Leppa, Virpi ;
Ramaswami, Gokul ;
Hartl, Chris ;
Schork, Andrew J. ;
Appadurai, Vivek ;
Buil, Alfonso ;
Werge, Thomas M. ;
Liu, Chunyu ;
White, Kevin P. ;
Horvath, Steve ;
Geschwind, Daniel H. .
SCIENCE, 2018, 359 (6376) :693-697
[16]   Most genetic risk for autism resides with common variation [J].
Gaugler, Trent ;
Klei, Lambertus ;
Sanders, Stephan J. ;
Bodea, Corneliu A. ;
Goldberg, Arthur P. ;
Lee, Ann B. ;
Mahajan, Milind ;
Manaa, Dina ;
Pawitan, Yudi ;
Reichert, Jennifer ;
Ripke, Stephan ;
Sandin, Sven ;
Sklar, Pamela ;
Svantesson, Oscar ;
Reichenberg, Abraham ;
Hultman, Christina M. ;
Devlin, Bernie ;
Roeder, Kathryn ;
Buxbaum, Joseph D. .
NATURE GENETICS, 2014, 46 (08) :881-885
[17]  
Gokoolparsadh A, 2017, GENOM DATA, V11, P113, DOI 10.1016/j.gdata.2016.12.005
[18]   Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism [J].
Gupta, Simone ;
Ellis, Shannon E. ;
Ashar, Foram N. ;
Moes, Anna ;
Bader, Joel S. ;
Zhan, Jianan ;
West, Andrew B. ;
Arking, Dan E. .
NATURE COMMUNICATIONS, 2014, 5
[19]   Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model [J].
Haslinger, Denise ;
Waltes, Regina ;
Yousaf, Afsheen ;
Lindlar, Silvia ;
Schneider, Ines ;
Lim, Chai K. ;
Tsai, Meng-Miao ;
Garvalov, Boyan K. ;
Acker-Palmer, Amparo ;
Krezdorn, Nicolas ;
Rotter, Bjoern ;
Acker, Till ;
Guillemin, Gilles J. ;
Fulda, Simone ;
Freitag, Christine M. ;
Chiocchetti, Andreas G. .
MOLECULAR AUTISM, 2018, 9
[20]   Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes [J].
He, Xin ;
Sanders, Stephan J. ;
Liu, Li ;
De Rubeis, Silvia ;
Lim, Elaine T. ;
Sutcliffe, James S. ;
Schellenberg, Gerard D. ;
Gibbs, Richard A. ;
Daly, Mark J. ;
Buxbaum, Joseph D. ;
State, Matthew W. ;
Devlin, Bernie ;
Roeder, Kathryn .
PLOS GENETICS, 2013, 9 (08)