Gradient estimates and entropy monotonicity formula for doubly nonlinear diffusion equations on Riemannian manifolds

被引:26
|
作者
Wang, Yuzhao [1 ,2 ]
Chen, Wenyi [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
doubly nonlinear diffusion equation; entropy monotonicity formula; gradient estimates; POROUS-MEDIUM; U(T);
D O I
10.1002/mma.3016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the first part of this paper, we prove the sharp global Li-Yau type gradient estimates for positive solutions to doubly nonlinear diffusion equation(DNDE) on complete Riemannian manifolds with nonnegative Ricci curvature. As an application, one can obtain a parabolic Harnack inequality. In the second part, we obtain a Perelman-type entropy monotonicity formula for DNDE on compact Riemannian manifolds with nonnegative Ricci curvature. These results generalize some works of Ni (JGA 2004), Lu-Ni-Vazquez-Villani (JMPA 2009) and Kotschwar-Ni (Annales Scientifiques de l'Ecole Normale Superieure 2009). Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:2772 / 2781
页数:10
相关论文
共 50 条