Dual spaces for martingale Musielak-Orlicz Lorentz Hardy spaces

被引:10
作者
Weisz, Ferenc [1 ]
Xie, Guangheng [2 ]
Yang, Dachun [3 ]
机构
[1] Eotvos L Univ, Dept Numer Anal, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
[2] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410075, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2022年 / 179卷
基金
匈牙利科学研究基金会; 中国国家自然科学基金;
关键词
Dual space; Musielak-Orlicz function; Martingale Hardy space; Doob maximal operator; Atomic characterization; LEBESGUE SPACES; INEQUALITIES; DOOBS;
D O I
10.1016/j.bulsci.2022.103154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, under the mild assumption that the Doob maximal operator is bounded on Musielak-Orlicz spaces, the authors first establish the atomic characterization of martingale Musielak-Orlicz Lorentz Hardy spaces. Using atomic characterizations, the authors then clarify the relations among five martingale Musielak-Orlicz Lorentz Hardy spaces and construct the generalized martingale BMO type spaces which prove to be the dual spaces of martingale Musielak- Orlicz Lorentz Hardy spaces. As applications, the authors further investigate John-Nirenb erg inequalities by the dual method. A novelty of this article is to apply the assumption on the boundedness of the Doob maximal operator to develop
引用
收藏
页数:49
相关论文
共 48 条
[1]  
[Anonymous], 1993, Martingale Spaces and Inequalities
[2]   Lebesgue spaces with variable exponent on a probability space [J].
Aoyama, Hiroyuki .
HIROSHIMA MATHEMATICAL JOURNAL, 2009, 39 (02) :207-216
[3]   Fractional integrals and their commutators on martingale Orlicz spaces [J].
Arai, Ryutaro ;
Nakai, Eiichi ;
Sadasue, Gaku .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
[4]   A modular variable Orlicz inequality for the local maximal operator [J].
Capone, Claudia ;
Cruz-Uribe, David ;
Fiorenza, Alberto .
GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (02) :201-206
[5]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[6]   EXTRAPOLATION AND INTERPOLATION IN GENERALIZED ORLICZ SPACES [J].
Cruz-Uribe, David ;
Hasto, Peter .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (06) :4323-4349
[7]   Variable Hardy Spaces [J].
Cruz-Uribe, David ;
Wang, Li-An Daniel .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (02) :447-493
[8]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[9]  
Garsia A, 1973, MARTINGALE INEQUALIT
[10]   Orlicz-Lorentz Hardy martingale spaces [J].
Hao, Zhiwei ;
Li, Libo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)