Laguerre-Sobolev orthogonal polynomials:: asymptotics for coherent pairs of type II

被引:13
作者
Alfaro, M
Moreno-Balcázar, JJ
Rezola, ML [1 ]
机构
[1] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[2] Univ Almeria, Dept Estadist & Matemat Aplicada, Almeria, Spain
[3] Univ Granada, Inst Fis Teor & Computac Carlos I, E-18071 Granada, Spain
关键词
Sobolev orthogonal polynomials; Laguerre polynomials; asymptotics; zeros;
D O I
10.1016/S0021-9045(03)00034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-n be polynomials orthogonal with respect to the inner product (f,g)(s) = integral(0)(infinity) fgdmu(0) + lambda integral(0)(infinity) f'g'dmu(1), where dmu(0) = x(alpha)e(-x) dx, dmu(1) = x(alpha+1)e(-x)/x-xi dx + Mdelta(xi) with alpha > - 1, xi less than or equal to 0, M greater than or equal to 0, and lambda > 0. A strong asymptotic on (0, infinity), a Mehler-Heine type formula, a Plancherel-Rotach type exterior asymptotic as well as an upper estimate for S-n are obtained. As a consequence, we give asymptotic results for the zeros and critical points of S-n and the distribution of contracted zeros. Some numerical examples are shown. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:79 / 96
页数:18
相关论文
共 15 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
[Anonymous], 1975, AM MATH SOC C PUBLIC
[3]   Zeros and critical points of Sobolev orthogonal polynomials [J].
Gautschi, W ;
Kuijlaars, ABJ .
JOURNAL OF APPROXIMATION THEORY, 1997, 91 (01) :117-137
[4]  
Gautschi W., 1996, Acta Numerica, V5, P45, DOI 10.1017/S0962492900002622
[5]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[6]   An upper bound for the Laguerre polynomials [J].
Lewandowski, Z ;
Szynal, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :529-533
[7]   Strong and Plancherel-Rotach asymptotics of non-diagonal Laguerre-Sobolev orthogonal polynomials [J].
Marcellán, F ;
Moreno-Balcázar, JJ .
JOURNAL OF APPROXIMATION THEORY, 2001, 110 (01) :54-73
[8]   Bernstein-Szego's theorem for Sobolev orthogonal polynomials [J].
Martínez-Finkelshtein, A .
CONSTRUCTIVE APPROXIMATION, 2000, 16 (01) :73-84
[9]  
MARTINEZFINKELS.A, 1997, METHODS APPL ANAL, V4, P430
[10]   Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Laguerre type [J].
Meijer, HG ;
Pérez, TE ;
Piñar, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (02) :528-546