Black hole singularity resolution via the modified Raychaudhuri equation in loop quantum gravity

被引:36
作者
Blanchette, Keagan [1 ]
Das, Saurya [2 ,3 ]
Hergott, Samantha [1 ]
Rastgoo, Saeed [1 ]
机构
[1] York Univ, Dept Phys & Astron, 4700 Keele St, Toronto, ON M3J 1P3, Canada
[2] Univ Lethbridge, Theoret Phys Grp, 4401 Univ Dr, Lethhbridge, AB T1K 3M4, Canada
[3] Univ Lethbridge, Quantum Alberta, Dept Phys & Astron, 4401 Univ Dr, Lethhbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
GRAVITATIONAL COLLAPSE; QUANTIZATION; GEOMETRY; STATES;
D O I
10.1103/PhysRevD.103.084038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive loop quantum gravity corrections to the Raychaudhuri equation in the interior of a Schwarzschild black hole and near the classical singularity. We show that the resulting effective equation implies defocusing of geodesics due to the appearance of repulsive terms. This prevents the formation of conjugate points, renders the singularity theorems inapplicable, and leads to the resolution of the singularity for this spacetime.
引用
收藏
页数:15
相关论文
共 72 条
[61]   Path integral polymer propagator of relativistic and nonrelativistic particles [J].
Morales-Tecotl, Hugo A. ;
Rastgoo, Saeed ;
Ruelas, Juan C. .
PHYSICAL REVIEW D, 2017, 95 (06)
[62]   Polymer quantization and the saddle point approximation of partition functions [J].
Morales-Tecotl, Hugo A. ;
Orozco-Borunda, Daniel H. ;
Rastgoo, Saeed .
PHYSICAL REVIEW D, 2015, 92 (10)
[63]   From black holes to white holes: a quantum gravitational, symmetric bounce [J].
Olmedo, Javier ;
Saini, Sahil ;
Singh, Parampreet .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (22)
[64]   GRAVITATIONAL COLLAPSE AND SPACE-TIME SINGULARITIES [J].
PENROSE, R .
PHYSICAL REVIEW LETTERS, 1965, 14 (03) :57-+
[65]  
Rastgoo S., ARXIV13047836
[66]   Nonlocal (but also nonsingular) physics at the last stages of gravitational collapse [J].
Saini, Anshul ;
Stojkovic, Dejan .
PHYSICAL REVIEW D, 2014, 89 (04)
[67]   CANONICAL QUANTIZATION OF SPHERICALLY SYMMETRICAL GRAVITY IN ASHTEKAR SELF-DUAL REPRESENTATION [J].
THIEMANN, T ;
KASTRUP, HA .
NUCLEAR PHYSICS B, 1993, 399 (01) :211-258
[68]  
Thiemann T., 2007, CAMBRIDGE MONOGRAPHS
[69]  
von Neumann J, 1931, MATH ANN, V104, P570
[70]   Schrodinger formalism, black hole horizons, and singularity behavior [J].
Wang, John E. ;
Greenwood, Eric ;
Stojkovic, Dejan .
PHYSICAL REVIEW D, 2009, 80 (12)