Lacunary polynomials, multiple blocking sets and Baer subplanes

被引:39
作者
Blokhuis, A
Storme, L
Szonyi, T
机构
[1] Tech Univ Eindhoven, NL-5600 MB Eindhoven, Netherlands
[2] Univ Ghent, FCW, B-9000 Ghent, Belgium
[3] Eotvos Lorand Univ, Dept Comp Sci, H-1088 Budapest, Hungary
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1999年 / 60卷
基金
匈牙利科学研究基金会;
关键词
D O I
10.1112/S0024610799007875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New lower bounds are given for the size of a point set in a Desarguesian projective plane over a finite field that contains at least a prescribed number s of points on every line. These bounds are best possible when q is square and s is small compared with q. In this case the smallest set is shown to be the union of disjoint Baer subplanes. The results are based on new results on the structure of certain lacunary polynomials, which can be regarded as a generalization of Redei's results in the case when the derivative of the polynomial vanishes.
引用
收藏
页码:321 / 332
页数:12
相关论文
共 16 条
[1]   Multiple blocking sets and arcs in finite planes [J].
Ball, S .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :581-593
[2]   Maximal arcs in Desarguesian planes of odd order do not exist [J].
Ball, S ;
Blokhuis, A ;
Mazzocca, F .
COMBINATORICA, 1997, 17 (01) :31-41
[3]  
Ball S., 1996, FINITE FIELDS APPL, V2, P125
[4]  
BARLOTTI A, 1956, B UNIONE MAT ITAL, V11, P553
[5]  
Blokhuis A, 1996, BOLYAI SOC MATH STUD, V2, P133
[6]  
Blokhuis A, 1994, B BELG MATH SOC, V3, P349
[7]   BLOCKING NUMBER OF AN AFFINE SPACE [J].
BROUWER, AE ;
SCHRIJVER, A .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (02) :251-253
[8]   BLOCKING SETS IN FINITE PROJECTIVE PLANES [J].
BRUEN, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (03) :380-&
[9]   POLYNOMIAL MULTIPLICITIES OVER FINITE-FIELDS AND INTERSECTION SETS [J].
BRUEN, AA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 60 (01) :19-33
[10]   ON MINIMUM BLOCKING COALITIONS IN SMALL PROJECTIVE PLANE GAMES [J].
DIPAOLA, JW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1969, 17 (02) :378-&