Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques

被引:167
作者
Churikov, A. V. [1 ]
Ivanishchev, A. V. [1 ]
Ivanishcheva, I. A. [1 ]
Sycheva, V. O. [1 ]
Khasanova, N. R. [2 ]
Antipov, E. V. [2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Inst Chem, Saratov 410012, Russia
[2] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 199992, Russia
关键词
Diffusion processes; Insertion host materials; Phase transition; Galvanostatic and potentiostatic intermittent titration technique; Li-ion battery; LOGISTIC DIFFERENTIAL-EQUATION; ELECTROCHEMICAL IMPEDANCE; KINETIC CHARACTERISTICS; GRAPHITE-ELECTRODES; NUMERICAL-ANALYSIS; MANGANESE-DIOXIDE; GENERAL EQUATION; SOLID-SOLUTION; HOST MATERIALS; ION;
D O I
10.1016/j.electacta.2009.12.079
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A new model of lithium-ion transport processes in the LiFePO4 electrode is proposed. This model takes into account the phase transition LiFePO4 <-> FePO4 accompanying reversible lithium intercalation into the electrode during potential or current steps. The diffusion coefficient of Li+ ion and its dependence on the LiFePO4/FePO4 phase ratio have been determined by means of processing of experimental potential and current transients in accordance with the model's equations. The results of galvanostatic and potentiostatic intermittent titration techniques are in good agreement. The value of diffusion coefficient varies within 10(-10)-10(-16) cm(2) s(-1) depending on the lithium content in solid solution LixFePO4 and Li1-xFePO4 (X<0.02) or the LiFePO4/FePO4 phase ratio. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2939 / 2950
页数:12
相关论文
共 49 条
  • [1] The source of first-cycle capacity loss in LiFePO4
    Andersson, AS
    Thomas, JO
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 498 - 502
  • [2] A review on new solutions, new measurements procedures and new materials for rechargeable Li batteries
    Aurbach, D
    [J]. JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 71 - 78
  • [3] Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries
    Aurbach, Doron
    Markovsky, Boris
    Salitra, Gregory
    Markevich, Elena
    Talyossef, Yossi
    Koltypin, Maxim
    Nazar, Linda
    Ellis, Brian
    Kovacheva, Daniella
    [J]. JOURNAL OF POWER SOURCES, 2007, 165 (02) : 491 - 499
  • [4] Carslaw H.S., 1986, Conduction of Heat In Solids, V2nde
  • [5] Electronically conductive phospho-olivines as lithium storage electrodes
    Chung, SY
    Bloking, JT
    Chiang, YM
    [J]. NATURE MATERIALS, 2002, 1 (02) : 123 - 128
  • [6] Application of pulse methods to the determination of the electrochemical characteristics of lithium intercalates
    Churikov, AV
    Ivanischev, AV
    [J]. ELECTROCHIMICA ACTA, 2003, 48 (24) : 3677 - 3691
  • [7] On the determination of kinetic characteristics of lithium intercalation into carbon
    Churikov, AV
    Volgin, MA
    Pridatko, KI
    [J]. ELECTROCHIMICA ACTA, 2002, 47 (17) : 2857 - 2865
  • [8] Crystal chemistry of the olivine-type LixFePO4 system (0 ≤ x ≤ 1) between 25 and 370°C
    Delacourt, C
    Rodríguez-Carvajal, J
    Schmitt, B
    Tarascon, JM
    Masquelier, C
    [J]. SOLID STATE SCIENCES, 2005, 7 (12) : 1506 - 1516
  • [9] The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
    Delacourt, C
    Poizot, P
    Tarascon, JM
    Masquelier, C
    [J]. NATURE MATERIALS, 2005, 4 (03) : 254 - 260
  • [10] Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
    Delmas, C.
    Maccario, M.
    Croguennec, L.
    Le Cras, F.
    Weill, F.
    [J]. NATURE MATERIALS, 2008, 7 (08) : 665 - 671