A spectral recovery method for Raman spectroscopy utilizing prior datasets

被引:1
作者
Li, Qifeng [1 ,2 ]
Ma, Xiangyun [1 ]
Sun, Xueqing [1 ]
Wang, Huijie [1 ]
Yu, Hui [1 ]
Xu, Kexin [1 ]
机构
[1] Tianjin Univ, State Key Lab Precis Measurement Technol & Instru, Tianjin 300072, Peoples R China
[2] Tianjin Key Lab Environm Monitoring Tech, Tianjin 300072, Peoples R China
关键词
Spectral recovery; Raman spectroscopy; Prior datasets; Low-rank; Quantitative analysis; QUANTITATIVE-ANALYSIS; SUBTRACTION ALGORITHM;
D O I
10.1016/j.saa.2019.117505
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Spectral-based method has been widely used for the qualitative and quantitative analysis of different substances in various fields. The spectral recovery method is a crucial role in the spectral-based method, which can save the measurement cost and computation time in measuring. In this paper, we introduce a simple and reliable spectral recovery method base on prior datasets, which can tolerate substantial spectral noise. The method has been successfully applied in the quantitative analysis of the pharmaceutical mixture. The SNR of the recovery spectra can be increased by similar to 100 times. (C) 2019 Published by Elsevier B.V.
引用
收藏
页数:4
相关论文
共 25 条
[1]  
Borman P., 2017, Q2 R1 VALIDATION ANA
[2]   Gasoline quality prediction using gas chromatography and FTIR spectroscopy: An artificial intelligence approach [J].
Brudzewski, K ;
Kesik, A ;
Kolodziejczyk, K ;
Zborowska, U ;
Ulaczyk, J .
FUEL, 2006, 85 (04) :553-558
[3]   Application of the wavelet transform method in quantitative analysis of Raman spectra [J].
Cai, WS ;
Wang, LY ;
Pan, ZX ;
Zuo, J ;
Xu, CY ;
Shao, XG .
JOURNAL OF RAMAN SPECTROSCOPY, 2001, 32 (03) :207-209
[4]   Adaptive wavelet transform suppresses background and noise for quantitative analysis by Raman spectrometry [J].
Chen, Da ;
Chen, Zhiwen ;
Grant, Edward .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2011, 400 (02) :625-634
[5]   An adaptive denoising method for Raman spectroscopy based on lifting wavelet transform [J].
Chen, Hao ;
Xu, Weiliang ;
Broderick, Neil ;
Han, Jianda .
JOURNAL OF RAMAN SPECTROSCOPY, 2018, 49 (09) :1529-1539
[6]   Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra [J].
Chen, Kun ;
Zhang, Hongyuan ;
Wei, Haoyun ;
Li, Yan .
APPLIED OPTICS, 2014, 53 (24) :5559-5569
[7]   Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation [J].
Chen, Shuo ;
Lin, Xiaoqian ;
Yuen, Clement ;
Padmanabhan, Saraswathi ;
Beuerman, Roger W. ;
Liu, Quan .
OPTICS EXPRESS, 2014, 22 (10) :12102-12114
[8]   Noise reduction in Raman spectra:: Finite impulse response filtration versus Savitzky-Golay smoothing [J].
Clupek, Martin ;
Matejka, Pavel ;
Volka, Karel .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (09) :1174-1179
[9]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246
[10]  
Golbabaee M., 2012, IEEE INT C AC SPEECH, DOI [10.1109/ICASSP.2012.6288484, DOI 10.1109/ICASSP.2012.6288484]