Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects

被引:95
作者
Whealan, KM
Kwak, SD
Tedrow, JR
Inoue, K
Snyder, BD
机构
[1] Beth Israel Deaconess Med Ctr, Orthoped Biomech Lab, Boston, MA 02215 USA
[2] Harvard Univ, Sch Med, Boston, MA USA
关键词
D O I
10.2106/00004623-200009000-00004
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background: The clinical management of lytic tumors of the spine is currently based on geometric measurements of the defect. However, the mechanical behavior of a structure depends on both ifs material and its geometric properties. Quantitative computed tomography and dual-energy x-ray absorptiometry were investigated as noninvasive tools for measuring the material and geometric properties of vertebrae with a simulated lytic defect. From these measures, yield loads were predicted with use of composite beam theory. Methods: Thirty-four fresh-frozen cadaveric spines were segmented into functional spinal units of three vertebral bodies with two intervertebral discs at the thoracic and lumbar levels. Lytic defects of equal size were created in one of three locations: the anterior, lateral, or posterior region of the vertebra. Each spinal unit mas scanned with use of computed tomography and dual-energy x-ray absorptiometry, and axial and bending rigidities were calculated from the image data. Each specimen was brought to failure under combined compression and forward flexion, and the axial load and bending moment at yield were recorded. Results: Although the relative defect size was nearly constant, measured yield loads had a large dispersion, suggesting that defect size alone was a poor predictor of failure. However, image-derived measures of structural rigidity correlated moderately well with measured yield loads. Furthermore, with use of composite beam theory with quantitative computed tomography-derived rigidities, vertebral yield loads were predicted on a one-to-one basis (concordance, r(c) = 0.74). Conclusions: Although current clinical guidelines for predicting fracture risk are based on geometric measurements of the defect, we have shown that the relative size of the defect alone does not account for title variation in vertebral yield loads. However, composite beam theory analysis with quantitative computed tomography-derived measures of rigidity can be used to prospectively predict the yield loads of vertebrae with lytic defects. Clinical Relevance: Image-predicted vertebral yield loads and analytical models that approximate loads applied to the spine during activities of daily living can be used to calculate a factor of fracture risk that can be employed by physicians to plan appropriate treatment or intervention.
引用
收藏
页码:1240 / 1251
页数:12
相关论文
共 40 条
[1]  
[Anonymous], 2007, Biostatistical analysis
[2]   PREDICTION OF THE COMPRESSIVE STRENGTH OF VERTEBRAL BODIES OF THE LUMBAR SPINE BY QUANTITATIVE COMPUTED-TOMOGRAPHY [J].
BIGGEMANN, M ;
HILWEG, D ;
BRINCKMANN, P .
SKELETAL RADIOLOGY, 1988, 17 (04) :264-269
[3]  
BLACK DM, 1992, J BONE MINER RES, V7, P633
[4]   CANCER STATISTICS, 1994 [J].
BORING, CC ;
SQUIRES, TS ;
TONG, T ;
MONTGOMERY, S .
CA-A CANCER JOURNAL FOR CLINICIANS, 1994, 44 (01) :7-26
[5]   POSTERIOR SEGMENTAL SPINAL INSTRUMENTATION (PSSI) WITH POSTEROLATERAL DECOMPRESSION AND DEBULKING FOR METASTATIC THORACIC AND LUMBAR SPINE DISEASE - LIMITATIONS OF THE TECHNIQUE [J].
BRIDWELL, KH ;
JENNY, AB ;
SAUL, T ;
RICH, KM ;
GRUBB, RL .
SPINE, 1988, 13 (12) :1383-1394
[6]   PREDICTION OF THE COMPRESSIVE STRENGTH OF HUMAN LUMBAR VERTEBRAE [J].
BRINCKMANN, P ;
BIGGEMANN, M ;
HILWEG, D .
SPINE, 1989, 14 (06) :606-610
[7]   BONE COMPRESSIVE STRENGTH - INFLUENCE OF DENSITY AND STRAIN RATE [J].
CARTER, DR ;
HAYES, WC .
SCIENCE, 1976, 194 (4270) :1174-1176
[8]  
CODY DD, 1991, SPINE, V16, P142
[9]  
COWIN SC, 1989, BONE MECH, P131
[10]   RECONSTRUCTIVE SPINAL SURGERY AS PALLIATION FOR METASTATIC MALIGNANCIES OF THE SPINE [J].
DEWALD, RL ;
BRIDWELL, KH ;
PRODROMAS, C ;
RODTS, MF .
SPINE, 1985, 10 (01) :21-26