Cubic spline prewavelets on the four-directional mesh

被引:3
作者
Buhmann, MD [1 ]
Davydov, O
Goodman, TNT
机构
[1] Univ Giessen, Inst Math, D-35392 Giessen, Germany
[2] Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
关键词
D O I
10.1007/s10208-002-0054-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper. we design differentiable, two-dimensional, piecewise polynomial cubic prewavelets of particularly small compact support. They are given in closed form, and provide stable, orthogonal decompositions of L-2(R-2). In particular. the splines we use in our prewavelet constructions give rise to stable bases of spline spaces that contain all cubic polynomials, whereas the more familiar box spline constructions cannot reproduce all cubic polynomials. unless resorting to a box spline of higher polynomial degree.
引用
收藏
页码:113 / 133
页数:21
相关论文
共 28 条
[1]   SPLINE PREWAVELETS FOR NONUNIFORM KNOTS [J].
BUHMANN, MD ;
MICCHELLI, CA .
NUMERISCHE MATHEMATIK, 1992, 61 (04) :455-474
[2]   LEAST SUPPORTED BASES AND LOCAL LINEAR INDEPENDENCE [J].
CARNICER, JM ;
PENA, JM .
NUMERISCHE MATHEMATIK, 1994, 67 (03) :289-301
[3]  
CHUI CK, 1994, WAVELETS THEORY ALGO, P213
[4]  
CHUI CK, 1988, CBMS NSF REG C SER A, V54
[5]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0
[6]   A new subdivision method for bivariate splines on the four-directional mesh [J].
Conti, C ;
Jetter, K .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 119 (1-2) :81-96
[7]  
DAHMEN W, 1983, LINEAR ALGEBRA APPL, V52-3, P217
[8]   Element-by-element construction of wavelets satisfying stability and moment conditions [J].
Dahmen, W ;
Stevenson, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :319-352
[9]  
Dahmen W., 1997, Acta Numerica, V6, P55, DOI 10.1017/S0962492900002713
[10]   C(1)-HIERARCHICAL BASES [J].
DAHMEN, W ;
OSWALD, P ;
SHI, XQ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 51 (01) :37-56