Field theory of disordered elastic interfaces at 3-loop order: The β-function

被引:7
作者
Wiese, Kay Jorg [1 ]
Husemann, Christoph [2 ]
Le Doussal, Pierre [1 ]
机构
[1] Sorbonne Univ, UPMC, PSL Res Univ, CNRS,Lab Phys Theor,Ecole Normale Super, 24 Rue Lhomond, F-75005 Paris, France
[2] Carl Zeiss, Carl Zeiss Promenade 10, D-07745 Jena, Germany
关键词
CHARGE-DENSITY WAVES; RENORMALIZATION; DYNAMICS; SYSTEMS; RG;
D O I
10.1016/j.nuclphysb.2018.04.013
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We calculate the effective action for disordered elastic manifolds in the ground state (equilibrium) up to 3-loop order. This yields the renormalization-group beta-function to third order in epsilon = 4 - d, in an expansion in the dimension d around the upper critical dimension d = 4. The calculations are performed using exact RG, and several other techniques, which allow us to resolve consistently the problems associated with the cusp of the renormalized disorder. (C) 2018 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:540 / 588
页数:49
相关论文
共 41 条
[1]   Thermal fluctuations in pinned elastic systems: field theory of rare events and droplets [J].
Balents, L ;
Le Doussal, P .
ANNALS OF PHYSICS, 2005, 315 (01) :213-303
[2]   The large scale energy landscape of randomly pinned objects [J].
Balents, L ;
Bouchaud, JP ;
Mezard, M .
JOURNAL DE PHYSIQUE I, 1996, 6 (08) :1007-1020
[3]   BOGOLUBOV-PARASIUK THEOREM IN ALPHA-PARAMETRIC REPRESENTATION [J].
BERGERE, MC ;
LAM, YMP .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (08) :1546-1557
[4]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[5]   UBER DIE MULTIPLIKATION DER KAUSALFUNKTIONEN IN DER QUANTENTHEORIE DER FELDER [J].
BOGOLIUBOW, NN ;
PARASIUK, OS .
ACTA MATHEMATICA, 1957, 97 (3-4) :227-266
[6]  
Bouchaud J.-P., DISORDERED SYSTEMS M
[7]   Exact multilocal renormalization group and applications to disordered problems [J].
Chauve, P ;
Le Doussal, P .
PHYSICAL REVIEW E, 2001, 64 (05) :27
[8]   Renormalization of pinned elastic systems: How does it work beyond one loop? [J].
Chauve, P ;
Le Doussal, P ;
Wiese, KJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (09) :1785-1788
[9]  
Collins J., 1984, Renormalization
[10]   RENORMALIZATION THEORY FOR INTERACTING CRUMPLED MANIFOLDS [J].
DAVID, F ;
DUPLANTIER, B ;
GUITTER, E .
NUCLEAR PHYSICS B, 1993, 394 (03) :555-664