A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te)

被引:35
作者
Aras, Gonca [1 ]
Yilmaz, Alp [1 ]
Tasdelen, H. Gunalp [1 ]
Ozden, Ayberk [2 ]
Ay, Feridun [3 ]
Perkgoz, Nihan Kosku [3 ]
Yeltik, Aydan [1 ]
机构
[1] TOBB Univ Econ & Technol, Dept Mat Sci & Nanotechnol Engn, TR-06560 Ankara, Turkey
[2] TU Bergakademie Freiberg, Inst Theoret Phys, D-09599 Freiberg, Germany
[3] Eskisehir Tech Univ, Dept Elect & Elect Engn, TR-26555 Eskisehir, Turkey
关键词
Chemical vapor deposition; Two-dimensional materials; Transition metal dichalcogenides; Salt additives; Seeding promoters; Patterned growth; LARGE-AREA GROWTH; WS2; THIN-FILMS; ATOMIC LAYERS; 2-DIMENSIONAL MATERIALS; GRAPHENE-OXIDE; SINGLE-CRYSTAL; CVD GROWTH; FEW-LAYER; 2D MOS2; WSE2;
D O I
10.1016/j.mssp.2022.106829
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Transition metal dichalcogenide (TMD) monolayers have recently garnered significant attention owing to their favorable electronic and optoelectronic properties. To date, chemical vapor deposition (CVD) growth of molybdenum di-sulfide, -selenide, and -telluride (MoS2, MoSe2, and MoTe2, respectively), and tungsten di-sulfide, -selenide, and -telluride (WS2, WSe2, and WTe2, respectively) has been widely investigated as the most promising two-dimensional (2D) TMDs. However, scalable and controllable growth of high-quality TMD monolayers remains a challenge. This review highlights the advances of CVD technique by focusing on the aspects of growth promoters, surface energy assistance and site selectivity, which are of great significance for the growth of monolayer TMDs. The challenges for high-performance applications are discussed at the end with a brief outlook on future work.
引用
收藏
页数:22
相关论文
共 184 条
[1]  
Ajayan P, 2016, PHYS TODAY, V69, P39
[2]   Two-dimensional flexible nanoelectronics [J].
Akinwande, Deji ;
Petrone, Nicholas ;
Hone, James .
NATURE COMMUNICATIONS, 2014, 5
[3]   Growth mode control of CVD-grown WS2 monolayer flakes via O2 pre-annealing for organic surfactant oxidation [J].
An, Gwang Hwi ;
Kim, Su Jin ;
Kim, Sanghyeon ;
Shin, So Jeong ;
Choi, Min ;
Kim, Dohyun ;
Rahman, Ikhwan Nur ;
Bang, Junhyeok ;
Kim, Kyungwan ;
Kim, Dong-Hyun ;
Lee, Hyun Seok .
APPLIED SURFACE SCIENCE, 2022, 585
[4]   Graphene and Two-Dimensional Materials for Optoelectronic Applications [J].
Bablich, Andreas ;
Kataria, Satender ;
Lemme, Max C. .
ELECTRONICS, 2016, 5 (01)
[5]   Effect of Carrier Gas Flow Field on Chemical Vapor Deposition of 2D MoS2 Crystal [J].
Bai, Minyu ;
Wen, Shuai ;
Zhao, Jijie ;
Du, Yuxuan ;
Xie, Fei ;
Liu, Huan .
COATINGS, 2021, 11 (05)
[6]   Quantum Multibody Interactions in Halide-Assisted Vapor-Synthesized Monolayer WSe2 and Its Integration in a High Responsivity Photodetector with Low-Interface Trap Density [J].
Bandyopadhyay, Avra S. ;
Adhikari, Nirmal ;
Kaul, Anupama B. .
CHEMISTRY OF MATERIALS, 2019, 31 (23) :9861-9874
[7]  
Bao Q, 2020, 2D MAT PHOTONIC OPTO, DOI [10.1016/C2017-0-02905-1, DOI 10.1016/C2017-0-02905-1]
[8]   Selective-area growth and controlled substrate coupling of transition metal dichalcogenides [J].
Bersch, Brian M. ;
Eichfeld, Sarah M. ;
Lin, Yu-Chuan ;
Zhang, Kehao ;
Bhimanapati, Ganesh R. ;
Piasecki, Aleksander F. ;
Labella, Michael, III ;
Robinson, Joshua A. .
2D MATERIALS, 2017, 4 (02)
[9]   Sonochemical exfoliation and photodetection properties of MoS2 Nanosheets [J].
Bhakhar, Sanjay A. ;
Patel, Nashreen F. ;
Zankat, Chetan K. ;
Tannarana, Mohit ;
Solanki, G. K. ;
Patel, K. D. ;
Pathak, V. M. ;
Pataniya, Pratik .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2019, 98 :13-18
[10]   A Novel and Facile Route to Synthesize Atomic-Layered MoS2 Film for Large-Area Electronics [J].
Boandoh, Stephen ;
Choi, Soo Ho ;
Park, Ji-Hoon ;
Park, So Young ;
Bang, Seungho ;
Jeong, Mun Seok ;
Lee, Joo Song ;
Kim, Hyeong Jin ;
Yang, Woochul ;
Choi, Jae-Young ;
Kim, Soo Min ;
Kim, Ki Kang .
SMALL, 2017, 13 (39)