On nonlocal p(x)-Laplacian Dirichlet problems

被引:101
作者
Fan, Xianling [1 ,2 ]
机构
[1] Lanzhou City Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff equation; Nonlocal equation; p(x)-Laplacian; Variational method; ELLIPTIC-EQUATIONS; MULTIPLICITY RESULT; POSITIVE SOLUTIONS; VARIABLE EXPONENT; KIRCHHOFF-TYPE; SPACES; REGULARITY; EXISTENCE;
D O I
10.1016/j.na.2009.12.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the nonlocal p(x)-Laplacian Dirichlet problems with non-variational form -A(u)Delta(p(x))u(x) = B(u)f(x, u(x)) in Omega; u vertical bar(partial derivative Omega) = 0, and with variational form -a(integral(Omega)vertical bar del u vertical bar(p(x))/p(x) dx) Delta(p(x))u(x) = b (integral F-Omega(x, u)dx) f(x, u (x)) in Omega; u vertical bar(partial derivative Omega) = 0, where F(x, t) = integral(t)(0) f(x, s)ds, and a is allowed to be singular at zero. Using (S+) mapping theory and the variational method, some results on existence and multiplicity for the problems are obtained under weaker hypotheses. Our results are also new even for the case when p(x) equivalent to p is a constant. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3314 / 3323
页数:10
相关论文
共 47 条
[21]  
CORREA FJS, APPL MATH LETT
[22]   On positive solutions of nonlocal and nonvariational elliptic problems [J].
Corrêa, FJSA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (07) :1147-1155
[23]   On a class of problems involving a nonlocal operator [J].
Corrêa, FJSA ;
Menezes, SDB ;
Ferreira, J .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (02) :475-489
[24]   On an elliptic equation of p-Kirchhoff type via variational methods [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (02) :263-277
[25]   GLOBAL SOLVABILITY FOR THE DEGENERATE KIRCHHOFF EQUATION WITH REAL ANALYTIC DATA [J].
DANCONA, P ;
SPAGNOLO, S .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :247-262
[26]  
Diening L., 2004, FSDONA04 Proc, V66, P38
[27]  
Fan X.-L., 2003, Chinese J. Contemp. Math, V24, P277
[28]   On the sub-supersolution method for p(x)-Laplacian equations [J].
Fan, Xianling .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) :665-682
[29]   Global C1,α regularity for variable exponent elliptic equations in divergence form [J].
Fan, Xianling .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) :397-417
[30]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852