QUASISYMMETRICALLY MINIMAL MORAN SETS ON PACKING DIMENSION

被引:0
作者
Li, Yanzhe [1 ]
Fu, Xiaohui [1 ]
Yang, Jiaojiao [2 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Guangxi Ctr Mathmat Res, Nanning 530004, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasisymmetric Mapping; Packing Dimension; Moran Set; HAUSDORFF DIMENSION;
D O I
10.1142/S0218348X21500432
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, two large classes of Moran sets with packing dimension 1 are shown to be quasisymmetrically minimal for packing dimension.
引用
收藏
页数:10
相关论文
共 20 条
[11]   Conformal dimension does not assume values between zero and one [J].
Kovalev, Leonid V. .
DUKE MATHEMATICAL JOURNAL, 2006, 134 (01) :1-13
[12]   Pointwise dimensions of general Moran measures with open set condition [J].
Li JinJun ;
Wu Min .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (04) :699-710
[13]   Quasisymmetric minimality on packing dimension for Moran sets [J].
Li, Yanzhe ;
Wu, Min ;
Xi, Lifeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) :324-334
[14]   The pointwise dimensions of Moran measures [J].
Lou ManLi ;
Wu Min .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) :1283-1292
[15]   HAUSDORFF DIMENSION AND QUASI-SYMMETRIC MAPPINGS [J].
TUKIA, P .
MATHEMATICA SCANDINAVICA, 1989, 65 (01) :152-160
[16]  
Tyson J, 1998, ANN ACAD SCI FENN-M, V23, P525
[17]   On quasisymmetric minimality of Cantor sets [J].
Wang, Wen ;
Wen, Shengyou .
TOPOLOGY AND ITS APPLICATIONS, 2014, 178 :300-314
[18]   Moran sets and Moran classes [J].
Wen, ZY .
CHINESE SCIENCE BULLETIN, 2001, 46 (22) :1849-1856
[19]  
WU JM, 1993, ANN ACAD SCI FENN-M, V18, P77
[20]   ON QUASISYMMETRIC MINIMALITY OF HOMOGENEOUS PERFECT SETS [J].
Yang, Jiaojiao ;
Wu, Min ;
Li, Yanzhe .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (01)