QUASISYMMETRICALLY MINIMAL MORAN SETS ON PACKING DIMENSION

被引:0
作者
Li, Yanzhe [1 ]
Fu, Xiaohui [1 ]
Yang, Jiaojiao [2 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Guangxi Ctr Mathmat Res, Nanning 530004, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasisymmetric Mapping; Packing Dimension; Moran Set; HAUSDORFF DIMENSION;
D O I
10.1142/S0218348X21500432
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, two large classes of Moran sets with packing dimension 1 are shown to be quasisymmetrically minimal for packing dimension.
引用
收藏
页数:10
相关论文
共 20 条
[1]  
Ahlfors L.V., 2006, Univ. Lect. Ser., V38
[2]   Quasisymmetrically Minimal Moran Sets [J].
Dai, Mei-Feng .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (02) :292-305
[3]   QUASISYMMETRICALLY MINIMAL MORAN SETS AND HAUSDORFF DIMENSION [J].
Dai, Yuxia ;
Wen, Zhixiong ;
Xi, Lifeng ;
Xiong, Ying .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (01) :139-151
[4]  
Falconer K., 1997, TECHNIQUES FRACTAL G
[5]  
Falconer K. J., 2014, Fractal Geometry: Mathematical Foundations and Applications
[6]  
GEHRING FW, 1973, J LOND MATH SOC, V6, P504
[7]   LP-INTEGRABILITY OF PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING [J].
GEHRING, FW .
ACTA MATHEMATICA, 1973, 130 (3-4) :265-277
[8]  
HAKOBYAN H., 2006, J. Contemp. Math. Anal., V41, P13
[9]   On the structures and dimensions of Moran sets [J].
Hua, S ;
Rao, H ;
Wen, ZY ;
Wu, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (08) :836-852
[10]   Local dimensions in Moran constructions [J].
Kaenmaki, Antti ;
Li, Bing ;
Suomala, Ville .
NONLINEARITY, 2016, 29 (03) :807-822