Achieving independent control of core diameter and carbon shell thickness in Pd-C core-shell nanoparticles by gas phase synthesis

被引:2
作者
Singh, Vinod [1 ,2 ]
Mehta, B. R. [1 ]
Sengar, Saurabh K. [1 ]
Karakulina, Olesia M. [3 ]
Hadermann, Joke [3 ]
Kaushal, Akshey [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Thin Film Lab, New Delhi 110016, India
[2] Delhi Technol Univ, Dept Appl Phys, New Delhi 110042, India
[3] Univ Antwerp, EMAT, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
关键词
gas phase synthesis; core-shell nanoparticles; controlled shell thickness; size selected Pd-C nanoparticles; COORDINATED SURFACE SITES; MAGNETIC NANOPARTICLES; HYDROGEN DIFFUSION; DOUBLE-WALL; OXIDATION; METALS; FUNCTIONALIZATION; NANOTUBES; GRAPHITE;
D O I
10.1088/1361-6528/aa7660
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Pd-C core-shell nanoparticles with independently controllable core size and shell thickness are grown by gas phase synthesis. First, the core size is selected by electrical mobility values of charged particles, and second, the shell thickness is controlled by the concentration of carbon precursor gas. The carbon shell grows by adsorption of carbon precursor gas molecules on the surface of nanoparticles, followed by sintering. The presence of a carbon shell on Pd nanoparticles is potentially important in hydrogen-related applications operating at high temperatures or in catalytic reactions in acidic/aqueous environments.
引用
收藏
页数:9
相关论文
共 33 条
  • [1] High-strength metal nanomagnets for diagnostics and medicine: carbon shells allow long-term stability and reliable linker chemistry
    Herrmann, Inge K.
    Grass, Robert N.
    Stark, Wendelin J.
    [J]. NANOMEDICINE, 2009, 4 (07) : 787 - 798
  • [2] Assessment of a Cylindrical and a Rectangular Plate Differential Mobility Analyzer for Size Fractionation of Nanoparticles at High-Aerosol Flow Rates
    Hontanon, Esther
    Rouenhoff, Marcel
    Azabal, Alfredo
    Ramiro, Emilio
    Kruis, Frank Einar
    [J]. AEROSOL SCIENCE AND TECHNOLOGY, 2014, 48 (03) : 333 - 339
  • [3] Pulse like hydrogen sensing response in Pd nanoparticle layers
    Khanuja, Manika
    Varandani, Deepak
    Mehta, Bodh R.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (25)
  • [4] Kim H Y, 2013, US patent, Patent No. [US 20130287948, 20130287948]
  • [5] Linus L, 2015, J PHYS D, V48
  • [6] Magnetic nanoparticles:: Synthesis, protection, functionalization, and application
    Lu, An-Hui
    Salabas, E. L.
    Schueth, Ferdi
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (08) : 1222 - 1244
  • [7] Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules
    Lu, Gang
    Li, Hai
    Liusman, Cipto
    Yin, Zongyou
    Wu, Shixin
    Zhang, Hua
    [J]. CHEMICAL SCIENCE, 2011, 2 (09) : 1817 - 1821
  • [8] Subsurface Hydrogen Diffusion into Pd Nanoparticles: Role of Low-Coordinated Surface Sites and Facilitation by Carbon
    Ludwig, Wiebke
    Savara, Aditya
    Madix, Robert J.
    Schauermann, Swetlana
    Freund, Hans-Joachim
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (05) : 3539 - 3544
  • [9] Role of Low-Coordinated Surface Sites in Olefin Hydrogenation: A Molecular Beam Study on Pd Nanoparticles and Pd(111)
    Ludwig, Wiebke
    Savara, Aditya
    Schauermann, Swetlana
    Freund, Hans-Joachim
    [J]. CHEMPHYSCHEM, 2010, 11 (11) : 2319 - 2322
  • [10] Chemical functionalization of magnetic carbon-encapsulated nanoparticles based on acid oxidation
    Ma, Yanwen
    Hu, Zheng
    Yu, Leshu
    Hu, Yemin
    Yue, Bing
    Wang, Xizhang
    Chen, Yi
    Lu, Yinong
    Liu, Yang
    hu, Juni Hu
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (41) : 20118 - 20122