Use of neural network models to predict liver transplantation waitlist mortality

被引:13
作者
Nagai, Shunji [1 ,2 ]
Nallabasannagari, Anubhav Reddy [3 ]
Moonka, Dilip [2 ,4 ]
Reddiboina, Madhu [3 ]
Yeddula, Sirisha [2 ]
Kitajima, Toshihiro [1 ,2 ]
Francis, Iman [2 ]
Abouljoud, Marwan [1 ,2 ]
机构
[1] Henry Ford Hosp, Div Transplant & Hepatobiliary Surg, 2799 West Grand Blvd,CFP 2, Detroit, MI 48202 USA
[2] Henry Ford Transplant Inst, Detroit, MI USA
[3] RediMinds Inc, Southfield, MI USA
[4] Henry Ford Hosp, Div Gastroenterol & Hepatol, Detroit, MI 48202 USA
关键词
VALIDATION;
D O I
10.1002/lt.26442
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Current liver transplantation (LT) organ allocation relies on Model for End-Stage Liver Disease-sodium scores to predict mortality in patients awaiting LT. This study aims to develop neural network (NN) models that more accurately predict LT waitlist mortality. The study evaluates patients listed for LT between February 27, 2002, and June 30, 2021, using the Organ Procurement and Transplantation Network/United Network for Organ Sharing registry. We excluded patients listed with Model for End-Stage Liver Disease (MELD) exception scores and those listed for multiorgan transplant, except for liver-kidney transplant. A subset of data from the waiting list was used to create a mortality prediction model at 90 days after listing with 105,140 patients. A total of 28 variables were selected for model creation. The data were split using random sampling into training, validation, and test data sets in a 60:20:20 ratio. The performance of the model was assessed using area under the receiver operating curve (AUC-ROC) and area under the precision-recall curve (AUC-PR). AUC-ROC for 90-day mortality was 0.936 (95% confidence interval [CI], 0.934-0.937), and AUC-PR was 0.758 (95% CI, 0.754-0.762). The NN 90-day mortality model outperformed MELD-based models for both AUC-ROC and AUC-PR. The 90-day mortality model specifically identified more waitlist deaths with a higher recall (sensitivity) of 0.807 (95% CI, 0.803-0.811) versus 0.413 (95% CI, 0.409-0.418; p < 0.001). The performance metrics were compared by breaking the test data set into multiple patient subsets by ethnicity, gender, region, age, diagnosis group, and year of listing. The NN 90-day mortality model outperformed MELD-based models across all subsets in predicting mortality. In conclusion, organ allocation based on NN modeling has the potential to decrease waitlist mortality and lead to more equitable allocation systems in LT.
引用
收藏
页码:1133 / 1143
页数:11
相关论文
共 21 条
[1]   Reduced Access to Liver Transplantation in Women: Role of Height, MELD Exception Scores, and Renal Function Underestimation [J].
Allen, Alina M. ;
Heimbach, Julie K. ;
Larson, Joseph J. ;
Mara, Kristin C. ;
Kim, W. Ray ;
Kamath, Patrick S. ;
Therneau, Terry M. .
TRANSPLANTATION, 2018, 102 (10) :1710-1716
[2]  
Anand Rajsavi S, 2018, AMIA Jt Summits Transl Sci Proc, V2017, P310
[3]   MELD-GRAIL-Na: Glomerular Filtration Rate and Mortality on Liver-Transplant Waiting List [J].
Asrani, Sumeet K. ;
Jennings, Linda W. ;
Kim, W. R. ;
Kamath, Patrick S. ;
Levitsky, Josh ;
Nadim, Mitra K. ;
Testa, Giuliano ;
Leise, Michael D. ;
Trotter, James F. ;
Klintmalm, Goran .
HEPATOLOGY, 2020, 71 (05) :1766-1774
[4]   Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation [J].
Bertsimas, Dimitris ;
Kung, Jerry ;
Trichakis, Nikolaos ;
Wang, Yuchen ;
Hirose, Ryutaro ;
Vagefi, Parsia A. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2019, 19 (04) :1109-1118
[5]   Predicting intra-operative and postoperative consequential events using machine-learning techniques in patients undergoing robot-assisted partial nephrectomy: a Vattikuti Collective Quality Initiative database study [J].
Bhandari, Mahendra ;
Nallabasannagari, Anubhav Reddy ;
Reddiboina, Madhu ;
Porter, James R. ;
Jeong, Wooju ;
Mottrie, Alexandre ;
Dasgupta, Prokar ;
Challacombe, Ben ;
Abaza, Ronney ;
Rha, Koon Ho ;
Parekh, Dipen J. ;
Ahlawat, Rajesh ;
Capitanio, Umberto ;
Yuvaraja, Thyavihally B. ;
Rawal, Sudhir ;
Moon, Daniel A. ;
Buffi, Nicolo M. ;
Sivaraman, Ananthakrishnan ;
Maes, Kris K. ;
Porpiglia, Francesco ;
Gautam, Gagan ;
Turkeri, Levent ;
Meyyazhgan, Kohul Raj ;
Patil, Preethi ;
Menon, Mani ;
Rogers, Craig .
BJU INTERNATIONAL, 2020, 126 (03) :350-358
[6]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[7]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[8]   Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation [J].
Dolores Ayllon, Maria ;
Ciria, Ruben ;
Cruz-Ramirez, Manuel ;
Perez-Ortiz, Maria ;
Gomez, Irene ;
Valente, Roberto ;
O'Grady, John ;
de la Mata, Manuel ;
Hervas-Martinez, Cesar ;
Heaton, Nigel D. ;
Briceno, Javier .
LIVER TRANSPLANTATION, 2018, 24 (02) :192-203
[9]   Training and Validation of Deep Neural Networks for the Prediction of 90-Day Post-Liver Transplant Mortality Using UNOS Registry Data [J].
Ershoff, Brent D. ;
Lee, Christine K. ;
Wray, Christopher L. ;
Agopian, Vatche G. ;
Urban, Gregor ;
Baldi, Pierre ;
Cannesson, Maxime .
TRANSPLANTATION PROCEEDINGS, 2020, 52 (01) :246-258
[10]  
Ge Wendong, 2018, AMIA Annu Symp Proc, V2018, P460