Deep learning powers cancer diagnosis in digital pathology

被引:21
作者
He, Yunjie [1 ]
Zhao, Hong [1 ]
Wong, Stephen T. C. [1 ]
机构
[1] Houston Methodist Canc Ctr, Syst Med & Bioengn Dept, Houston, TX 77030 USA
关键词
Digital pathology; microscopy image; AI; deep learning; graph neural networks; cancer diagnosis;
D O I
10.1016/j.compmedimag.2020.101820
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Technological innovation has accelerated the pathological diagnostic process for cancer, especially in digitizing histopathology slides and incorporating deep learning-based approaches to mine the subvisual morphometric phenotypes for improving pathology diagnosis. In this perspective paper, we provide an overview on major deep learning approaches for digital pathology and discuss challenges and opportunities of such approaches to aid cancer diagnosis in digital pathology. In particular, the emerging graph neural network may further improve the performance and interpretability of deep learning in digital pathology.
引用
收藏
页数:3
相关论文
共 70 条
[1]   Artificial intelligence as the next step towards precision pathology [J].
Acs, B. ;
Rantalainen, M. ;
Hartman, J. .
JOURNAL OF INTERNAL MEDICINE, 2020, 288 (01) :62-81
[2]  
Ahmad M.A., 2018, P 2018 ACM INT C BIO
[3]  
[Anonymous], 2014, 27THINT C NEURAL INF
[4]  
Barnett J.H., 2005, MAA NOTES, V74, P197
[5]   Artificial intelligence and machine learning in nephropathology [J].
Becker, Jan U. ;
Mayerich, David ;
Padmanabhan, Meghana ;
Barratt, Jonathan ;
Ernst, Angela ;
Boor, Peter ;
Cicalese, Pietro A. ;
Mohan, Chandra ;
Nguyen, Hien V. ;
Roysam, Badrinath .
KIDNEY INTERNATIONAL, 2020, 98 (01) :65-75
[6]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[7]  
Bojanowski P., 2015, ARXIV151106303
[8]  
Brock Andrew., 2018, Large scale GAN training for high fidelity natural image synthesis, DOI DOI 10.48550/ARXIV.1809.11096
[9]  
Chakraborty Supriyo, Interpretability of Deep Learning Models: A Survey of Results, 2017 IEEE SMARTWORLD
[10]   Deep Learning for Whole Slide Image Analysis: An Overview [J].
Dimitriou, Neofytos ;
Arandjelovic, Ognjen ;
Caie, Peter D. .
FRONTIERS IN MEDICINE, 2019, 6