Slag-based geopolymer microspheres as a support for CO2 methanation

被引:16
|
作者
Wan, Hengyu [1 ,2 ]
He, Yan [1 ,2 ]
Su, Qiaoqiao [4 ]
Liu, Leping [3 ]
Cui, Xuemin [1 ,2 ]
机构
[1] Guangxi Univ, Sch Chem & Chem Engn, Nanning 530004, Peoples R China
[2] Guangxi Univ, Guangxi Key Lab Petrochem Resource Proc & Proc In, Nanning 530004, Peoples R China
[3] Nanning Normal Univ, Coll Chem & Mat, Guangxi Key Lab Nat Polymer Chem & Phys, Nanning 530001, Peoples R China
[4] Guangxi Univ Nationalities, Guangxi Higher Educ Inst, Coll Chem & Chem Engn, Key Lab Chem & Biol Transformat Proc,Guangxi Key, Nanning 530006, Guangxi, Peoples R China
关键词
Geopolymer microspheres; CO2; methanation; Nickel; Stability; Metal-support interaction; CATALYSTS; GAS; NI/ZRO2; SURFACE; ALKALI; STATE; MGO;
D O I
10.1016/j.fuel.2022.123627
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reducing the emission of CO2 and converting it into energy are the key issues researchers are concerned about. Geopolymers with the advantage of alkali metal synergistic catalysis and excellent ability to adsorb metals are promising catalyst supports. To prove this point, KOH-activated chemically synthesized slag (CaO-MgO-Al2O3- SiO2) and ground granulated blast furnace slag were used as the raw materials in this study to prepare CO2 methanation catalysts. Ni metal (15 wt%) was loaded onto the slag-based geopolymers using the incipient wetness impregnation method. The as-synthesized slag-based geopolymer and real slag-based geopolymer cat-alysts were prepared and denoted as Ni-P-SGS and Ni-S-SGS, respectively. The results showed that the Ni-P-SGS catalyst showed better Ni dispersion, more alkaline sites, and stronger CO2 adsorption capacity, and hence higher catalytic activity for CO2 methanation than the Ni-S-SGS catalyst. Therefore, the Ni-P-SGS catalyst showed a CO2 conversion of 80.2% and a CH4 selectivity of 99.2% at 400 degrees C/0.1 MPa and a weight hourly space velocity of 12000 mL g(-1)h(-1).This performance is superior to that of the Ni-S-SGS catalyst, which showed a CO2 conversion of 72.8% and CH4 selectivity of 98.3%. In addition, the hydrogenation of formate seemed to be the rate-limiting step for the formation of CH4. This work provides sufficient evidence that geopolymers are promising catalyst supports.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] CO2 methanation over rare earth doped Ni based mesoporous catalysts with intensified low-temperature activity
    Xu, Leilei
    Wang, Fagen
    Chen, Mindong
    Nie, Dongyang
    Lian, Xinbo
    Lu, Zhenyu
    Chen, Hanxiang
    Zhang, Kan
    Ge, Pengxiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (23) : 15523 - 15539
  • [32] Effect of the structure of Ni/TiO2 catalyst on CO2 methanation
    Zhou, Rui
    Rui, Ning
    Fan, Zhigang
    Liu, Chang-jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (47) : 22017 - 22025
  • [33] High value utilization of waste blast furnace slag: New Ni-CeO2/hBFS catalyst for low temperature CO2 methanation
    Chen, Xuanxiao
    He, Yan
    Cui, Xuemin
    Liu, Leping
    FUEL, 2023, 338
  • [34] CO and CO2 Methanation Over Supported Cobalt Catalysts
    Le, Thien An
    Kim, Min Sik
    Lee, Sae Ha
    Park, Eun Duck
    TOPICS IN CATALYSIS, 2017, 60 (9-11) : 714 - 720
  • [35] Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation: The support and ceria promotion effects
    Hu, Feiyang
    Tong, Sai
    Lu, Kun
    Chen, Cheng-Meng
    Su, Fang-Yuan
    Zhou, Jian
    Lu, Zhang-Hui
    Wang, Xuewen
    Feng, Gang
    Zhang, Rongbin
    JOURNAL OF CO2 UTILIZATION, 2019, 34 : 676 - 687
  • [36] CO2 methanation boosted by support-size-dependent strong metal-support interaction and B-O-Ti component
    Yuan, Shaoyu
    Yang, Yushan
    Xiong, Zhangyi
    Guo, Peijing
    Sun, Sufang
    Li, Zejiang
    Du, Jianlong
    Gao, Yongjun
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (02) : 321 - 332
  • [37] The reaction kinetics of CO2 methanation on a bifunctional Ni/MgO catalyst
    Loder, A.
    Siebenhofer, M.
    Lux, S.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 85 : 196 - 207
  • [38] Effects of Na content in Na/Ni/SiO2 and Na/Ni/CeO2 catalysts for CO and CO2 methanation
    Le, Thien An
    Kim, Tae Wook
    Lee, Sae Ha
    Park, Eun Duck
    CATALYSIS TODAY, 2018, 303 : 159 - 167
  • [39] Ni/Al2O3 catalysts for CO2 methanation: Effect of silica and nickel loading
    Riani, Paola
    Spennati, Elena
    Garcia, Maria Villa
    Escribano, Vicente Sanchez
    Busca, Guido
    Garbarino, Gabriella
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (64) : 24976 - 24995
  • [40] A fixed-bed reactor modeling study on the methanation of CO2
    Schlereth, David
    Hinrichsen, Olaf
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2014, 92 (04) : 702 - 712