Intersections of odd order Hall subgroups

被引:17
作者
Dolfi, S [1 ]
机构
[1] Dipartimento Matemat, I-50134 Florence, Italy
关键词
D O I
10.1112/S0024609304003807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a set pi of odd primes and a pi-solvable finite group G, one can choose three (not necessarily distinct) Hall pi-subgroups of G whose intersection is O-pi (G). This statement relies on a result concerning long orbits in coprime actions of groups of odd order.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 10 条
[1]   REGULAR ORBITS ON SYMPLECTIC MODULES [J].
ESPUELAS, A .
JOURNAL OF ALGEBRA, 1991, 138 (01) :1-12
[2]   LARGE CHARACTER DEGREES OF GROUPS OF ODD ORDER [J].
ESPUELAS, A .
ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (03) :499-505
[3]  
GLUCK D, 1983, CAN J MATH, V35, P59, DOI 10.4153/CJM-1983-005-2
[4]  
HARTLEY, 1994, J REINE ANGEW MATH, V451, P175
[5]   Large orbits in actions of nilpotent groups [J].
Isaacs, IM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :45-50
[6]  
Manz O., 1993, LONDON MATH SOC LECT, V185
[7]   Another proof of Gluck's theorem [J].
Matsuyama, H .
JOURNAL OF ALGEBRA, 2002, 247 (02) :703-706
[8]   Orbit sizes, character degrees and Sylow subgroups [J].
Moretó, A ;
Wolf, TR .
ADVANCES IN MATHEMATICS, 2004, 184 (01) :18-36
[9]   GROUPS WITH NORMAL SOLVABLE HALL P'-SUBGROUPS [J].
PASSMAN, DS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 123 (01) :99-&
[10]   Large orbits of supersolvable linear groups [J].
Wolf, TR .
JOURNAL OF ALGEBRA, 1999, 215 (01) :235-247