Sor type iterative methods for solving least squares problems

被引:1
作者
Song, Y [1 ]
Goro, O [1 ]
机构
[1] Nanjing Normal Univ, Dept Math, Nanjing, Peoples R China
关键词
least squares problems; SOR type iterative methods; optimal parameters; optimal spectral radii;
D O I
10.1080/00207169808804681
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to solve least squares problems the block SOR iterative methods are proposed and investigated by some authors. In this paper, we generalize the usual block SOR methods. Other five SOR type iterative methods are defined. Their convergence are discussed, the optimal parameters and optimal spectral radii about the SOR type methods are given.
引用
收藏
页码:99 / 118
页数:20
相关论文
共 12 条
[1]  
CAI D, 1985, NUMER MATH SINICA, V7, P259
[2]  
CAI D, 1986, NUMER MATH SINICA, V8, P322
[4]  
HUANG D, 1993, NUMER MATH SINICA, V16, P108
[5]  
HUANG D, 1990, NUMER MATH J CHIN U, V12, P158
[6]  
KOULIKOV L, 1982, ALGEBRE THEORIE NOMB, P469
[7]   ON THE CONVERGENCE OF THE SYMMETRIC SUCCESSIVE OVERRELAXATION METHOD [J].
KRISHNA, LB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 56 (JAN) :185-194
[8]   CONVERGENCE OF BLOCK ITERATIVE METHODS APPLIED TO SPARSE LEAST-SQUARES PROBLEMS [J].
NIETHAMMER, W ;
DEPILLIS, J ;
VARGA, RS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) :327-341
[9]   DIFFERENT SPLITTINGS AND THE ASSOCIATED ITERATION METHODS [J].
NIETHAMMER, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (02) :186-200
[10]   BLOCK AOR ITERATIVE SCHEMES FOR LARGE-SCALE LEAST-SQUARES PROBLEMS [J].
PAPADOPOULOU, EP ;
SARIDAKIS, YG ;
PAPATHEODOROU, TS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :637-660