One-Parameter Scaling Theory for Stationary States of Disordered Nonlinear Systems

被引:14
作者
Bodyfelt, Joshua D. [1 ,2 ,3 ]
Kottos, Tsampikos [1 ]
Shapiro, Boris [4 ]
机构
[1] Wesleyan Univ, Dept Phys, Middletown, CT 06459 USA
[2] MPI Dynam & Self Org, D-37073 Gottingen, Germany
[3] MPI Phys Complex Syst, D-01187 Dresden, Germany
[4] Technion Israel Inst Technol, IL-32000 Haifa, Israel
关键词
DIMENSIONAL HAMILTONIAN-SYSTEMS; PARTIAL DIFFERENCE-EQUATIONS; ANDERSON LOCALIZATION; DISCRETE BREATHERS; PERIODIC-SOLUTIONS; DELOCALIZATION; MATRICES; LATTICES; LENGTH; WAVES;
D O I
10.1103/PhysRevLett.104.164102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show, using detailed numerical analysis and theoretical arguments, that the normalized participation number of the stationary solutions of disordered nonlinear lattices obeys a one-parameter scaling law. Our approach opens a new way to investigate the interplay of Anderson localization and nonlinearity based on the powerful ideas of scaling theory.
引用
收藏
页数:4
相关论文
共 44 条
[1]  
ABDULLAEV FK, 1992, NONLINEARITY DISORDE
[2]   PERTURBATION-THEORY FOR PERIODIC-ORBITS IN A CLASS OF INFINITE DIMENSIONAL HAMILTONIAN-SYSTEMS [J].
ALBANESE, C ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (01) :193-205
[3]   PERIODIC-SOLUTIONS OF SOME INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS ASSOCIATED WITH NON-LINEAR PARTIAL DIFFERENCE-EQUATIONS .1. [J].
ALBANESE, C ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (03) :475-502
[4]   PERIODIC-SOLUTIONS OF SOME INFINITE-DIMENSIONAL HAMILTONIAN-SYSTEMS ASSOCIATED WITH NON-LINEAR PARTIAL DIFFERENCE-EQUATIONS .2. [J].
ALBANESE, C ;
FROHLICH, J ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (04) :677-699
[5]   TRANSITION-STRENGTH FLUCTUATIONS AND THE ONSET OF CHAOTIC MOTION [J].
ALHASSID, Y ;
LEVINE, RD .
PHYSICAL REVIEW LETTERS, 1986, 57 (23) :2879-2882
[6]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[7]   Discrete breathers and Anderson modes:: two faces of the same phenomenon? [J].
Archilla, JFR ;
MacKay, RS ;
Marín, JL .
PHYSICA D, 1999, 134 (04) :406-418
[8]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[9]  
Bishop AR, 1989, Disorder and nonlinearity
[10]  
BODYFELT J, IN PRESS