Graph Convolutional Networks for Hyperspectral Image Classification

被引:1336
作者
Hong, Danfeng [1 ]
Gao, Lianru [2 ]
Yao, Jing [3 ]
Zhang, Bing [2 ,4 ]
Plaza, Antonio [5 ]
Chanussot, Jocelyn [6 ,7 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[4] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[5] Univ Extremadura, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Escuela Politecn, Caceres 10003, Spain
[6] Univ Grenoble Alpes, CNRS, INRIA, LJK,Grenoble INP, F-38000 Grenoble, France
[7] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 07期
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Hyperspectral imaging; Task analysis; Symmetric matrices; Fourier transforms; Hyperspectral (HS) classification; convolutional neural networks (CNNs); graph convolutional networks (GCNs); deep learning (DL); fusion; FRAMEWORK;
D O I
10.1109/TGRS.2020.3015157
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural networks (CNNs) have been attracting increasing attention in hyperspectral (HS) image classification due to their ability to capture spatial-spectral feature representations. Nevertheless, their ability in modeling relations between the samples remains limited. Beyond the limitations of grid sampling, graph convolutional networks (GCNs) have been recently proposed and successfully applied in irregular (or nongrid) data representation and analysis. In this article, we thoroughly investigate CNNs and GCNs (qualitatively and quantitatively) in terms of HS image classification. Due to the construction of the adjacency matrix on all the data, traditional GCNs usually suffer from a huge computational cost, particularly in large-scale remote sensing (RS) problems. To this end, we develop a new minibatch GCN (called miniGCN hereinafter), which allows to train large-scale GCNs in a minibatch fashion. More significantly, our miniGCN is capable of inferring out-of-sample data without retraining networks and improving classification performance. Furthermore, as CNNs and GCNs can extract different types of HS features, an intuitive solution to break the performance bottleneck of a single model is to fuse them. Since miniGCNs can perform batchwise network training (enabling the combination of CNNs and GCNs), we explore three fusion strategies: additive fusion, elementwise multiplicative fusion, and concatenation fusion to measure the obtained performance gain. Extensive experiments, conducted on three HS data sets, demonstrate the advantages of miniGCNs over GCNs and the superiority of the tested fusion strategies with regard to the single CNN or GCN models. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_GCN for the sake of reproducibility.
引用
收藏
页码:5966 / 5978
页数:13
相关论文
共 44 条
[1]  
Anderson J.R, 1976, US GEOLOGICAL SURVEY
[2]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[3]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[4]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[5]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[6]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[7]  
Cooper G. R, 1991, Continuous and Discrete Signal and System Analysis
[8]   Morphological Attribute Profiles for the Analysis of Very High Resolution Images [J].
Dalla Mura, Mauro ;
Benediktsson, Jon Atli ;
Waske, Bjoern ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10) :3747-3762
[9]  
Fan RK, 1997, CBMS Regional Conference Series, V92
[10]   Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles [J].
Fauvel, Mathieu ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Sveinsson, Johannes R. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11) :3804-3814