High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum

被引:113
作者
Chou, Yu-Hsun [1 ,2 ]
Wu, Yen-Mo [2 ]
Hong, Kuo-Bin [2 ]
Chou, Bo-Tsun [3 ]
Shih, Jheng-Hong [4 ]
Chung, Yi-Cheng [4 ]
Chen, Peng-Yu [3 ]
Lin, Tzy-Rong [4 ,5 ]
Lin, Chien-Chung [1 ]
Lin, Sheng-Di [3 ]
Lu, Tien-Chang [2 ]
机构
[1] Natl Chiao Tung Univ, Inst Lighting & Energy Photon, Tainan 71150, Taiwan
[2] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
[3] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 300, Taiwan
[4] Natl Taiwan Ocean Univ, Dept Mech & Mechatron Engn, Keelung 202, Taiwan
[5] Natl Taiwan Ocean Univ, Inst Optoelect Sci, Keelung 202, Taiwan
关键词
Nanolaser; surface plasmon; ZnO; nanowire; aluminum; OPTICAL-CONSTANTS; DIFFRACTION LIMIT; NANOWIRE LASERS; WAVE-GUIDES; ZNO; CONFINEMENT; ULTRAVIOLET; FILM; NANOSTRUCTURES; ARRAYS;
D O I
10.1021/acs.nanolett.6b00537
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The recent development of plasmonics has overcome the optical diffraction limit and fostered the development of several important components including nanolasers, low-operation-power modulators, and high-speed detectors. In particular, the advent of surface-plasmon-polariton (SPP) nanolasers has enabled the development of coherent emitters approaching the nanoscale. SPP nanolasers widely adopted metal insulator semiconductor structures because the presence of an insulator can prevent large metal loss. However, the insulator is not necessary if permittivity combination of laser structures is properly designed. Here, we experimentally demonstrate a SPP nanolaser with a ZnO nanowire on the as-grown single-crystalline aluminum. The average lasing threshold of this simple structure is 20 MW/cm(2), which is four-times lower than that of structures with additional insulator layers. Furthermore, single-mode laser operation can be sustained at temperatures up to 353 K. Our study represents a major step toward the practical realization of SPP nanolasers.
引用
收藏
页码:3179 / 3186
页数:8
相关论文
共 44 条
[1]   Observation of Stimulated Emission of Surface Plasmon Polaritons [J].
Ambati, Muralidhar ;
Nam, Sung Hyun ;
Ulin-Avila, Erick ;
Genov, Dentcho A. ;
Bartal, Guy ;
Zhang, Xiang .
NANO LETTERS, 2008, 8 (11) :3998-4001
[2]  
Andersen ML, 2011, NAT PHYS, V7, P215, DOI [10.1038/nphys1870, 10.1038/NPHYS1870]
[3]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[4]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[5]   Single-crystalline aluminum film for ultraviolet plasmonic nanolasers [J].
Chou, Bo-Tsun ;
Chou, Yu-Hsun ;
Wu, Yen-Mo ;
Chung, Yi-Cheng ;
Hsueh, Wei-Jen ;
Lin, Shih-Wei ;
Lu, Tien-Chang ;
Lin, Tzy-Rong ;
Lin, Sheng-Di .
SCIENTIFIC REPORTS, 2016, 6
[6]   Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers [J].
Chou, Yu-Hsun ;
Chou, Bo-Tsun ;
Chiang, Chih-Kai ;
Lai, Ying-Yu ;
Yang, Chun-Ting ;
Li, Heng ;
Lin, Tzy-Rong ;
Lin, Chien-Chung ;
Kuo, Hao-Chung ;
Wang, Shing-Chung ;
Lu, Tien-Chang .
ACS NANO, 2015, 9 (04) :3978-3983
[7]   A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement [J].
Dai, Daoxin ;
He, Sailing .
OPTICS EXPRESS, 2009, 17 (19) :16646-16653
[8]   Quantum Plasmonic Circuits [J].
de Leon, Nathalie P. ;
Lukin, Mikhail D. ;
Park, Hongkun .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (06) :1781-1791
[9]   Metallic subwavelength-cavity semiconductor nanolasers [J].
Ding, K. ;
Ning, C. Z. .
LIGHT-SCIENCE & APPLICATIONS, 2012, 1 :e20-e20
[10]   Plexciton Dynamics: Exciton-Plasmon Coupling in a J-Aggregate-Au Nanoshell Complex Provides a Mechanism for Nonllinearity [J].
Fofang, Nche T. ;
Grady, Nathaniel K. ;
Fan, Zhiyuan ;
Govorov, Alexander O. ;
Halas, Naomi J. .
NANO LETTERS, 2011, 11 (04) :1556-1560